针对高维数据聚类的问题,许多有效的方法已经被提出,级联的子空间聚类算法CSC就是一种有效的解决法案。但是CSC算法定义的聚类损失可能破坏特征空间,从而取得非代表性的无意义特征,进而损害聚类性能。为了解决这一问题,提出了一种结合自编码器保留数据结构的改进算法。具体地说,使用聚类损失作为引导,分散特征空间数据点,同时采用一种欠完备的自动编码器作为重构损失,约束操作和维护数据生成分布的局部结构。将两者结合,共同优化聚类标签的分配,学习适合聚类的局部结构保留特征。使用自适应矩估计(Adam)和小批量随机梯度下降(mini-batch SGD)两种优化方法调整模型参数。在多个数据集上,使用聚类结果准确率(ACC)、标准互信息(NMI)和调整rand指数(ARI)三个评价指标验证了该算法的有效性和优越性。
2021-04-30 17:03:09 1.31MB 高维数据聚类 自编码器 聚类损失
1
最优波束形成与CBF的方向图和SINR损失的对比仿真图
2021-04-29 19:00:17 2KB Opt&CBF
1
PyTorch中的语义分割 此仓库包含一个PyTorch,用于不同数据集的不同语义分割模型的实现。 要求 在运行脚本之前,需要先安装PyTorch和Torchvision,以及用于数据预处理的PIL和opencv和用于显示培训进度的tqdm 。 支持PyTorch v1.1(使用新的受支持的Tensoboard); 可以使用更早期的版本,但不要使用tensoboard,而要使用tensoboardX。 pip install -r requirements.txt 或本地安装 pip install --user -r requirements.txt 主要特点 清晰易用的结构, 一个j
1
损失索赔通知书精品模板方案.doc
2021-04-13 09:00:48 32KB 精品模板
面部动作单元识别任务是理解人脸表情最重要的环节之一,但因为类别极度不平衡和属于多标签分类等问题,给算法设计带来了不小的困难。针对这些问题设计了一种基于深度学习的面部动作单元识别算法。首先,基于迁移学习理论,以人脸识别任务为目标驱动,使用大规模数据集预训练卷积网络,使模型具有提取人脸抽象特征的能力;其次,设计了一个根据分类置信度来动态加权样本损失大小的目标函数,使得模型更关注于优化少数类样本;最后,结合多标签共现关系拟合和人脸关键点回归两个相关任务,联合训练模型并测试。实验结果表明,该方法在CK+和MMI数据集上能有效提升分类正确率与F1分数。
1
int 到 float 转换精度损失测试程序 C++ 源代码, Borland C++ 5.5 编译通过.
2021-04-06 19:42:30 65KB 综合系统类
1
完整英文版IEC TR 63018:2015 Flexible printed circuit boards (FPCBs) - Method to decrease signal loss by using noise suppression materials(柔性印刷电路板(FPCBs)--通过使用噪声抑制材料减少信号损失的方法)。 IEC TR 63018:2015(E)规定了通过使用噪声抑制材料(以下简称NSM)改善FPCB的信号损耗的准则。本技术报告还指出了利用网络分析仪设备测量使用NSMs的FPCB的信号损耗变化的方法。此外,本方法仅测量使用FPCB的NSMs的信号损耗变化值。
2021-04-05 09:03:50 2.26MB iec 63018 fpc 柔性印刷电路板
提出一种新型的基于光滑Ramp损失函数的健壮支持向量机,能够有效抑制孤立点对泛化性能的影响,并采用CCCP将它的非凸优化目标函数转换成连续、二次可微的凸优化。在此基础上,给出训练健壮支持向量机的一种Newton型算法并且分析了算法的收敛性质。实验结果表明,提出的健壮支持向量机对孤立点不敏感,在各种数据集上均获得了比传统的SVMlight算法和Newton-Primal算法更优的泛化能力。
1
离心泵圆盘摩擦损失的实验研究.rar
1
流体粘度对离心泵能量损失的影响.rar
1