Matlab代码sqrt 该存储库包含用于产生手稿结果的代码:()。 代码-PCSKM exeSimus.m:运行整个分析并将结果存储在./GenRes/results文件夹中。 该文件包含以下选项: 确定: 0/1开始时不带或带有随机种子。 JMPCKM_OVERLOAD: 0/1使用重载或非重载MPCK-Means。 该库用于MPCK-Means算法。 看 。 CONSTR_PERC: 0/1根据大小使用固定数量的约束或百分比。 日志: (0)无日志文件且无显示,(1)仅日志文件,(2)仅显示,(其他)显示和日志文件。 constraints_type:要使用的约束类型; 0/1激活ML和/或CL,当从所有可用约束中选取-1则随机约束时,则同时选择了1则相等数量的每种类型的牺牲子。 Constraints_number:要使用的固定值或约束的百分比。 citer:每个约束的迭代次数 sstep:要测试的稀疏性参数值,从步骤1.1到sqrt(尺寸),步长为sstep 。 maxIter:算法迭代以达到收敛。 k折:选择k进行k折验证。 CVstatsPer.m:生成有关数据集的统计信
2021-12-28 15:40:03 5.59MB 系统开源
1
关于k-means算法的源程序代码.%%%%%%函数说明%%%%%% %输入: % sample--样本集; % k--聚类数目; %输出: % y--类标; % cnew--聚类中心; % n--迭代次数; function [y cnew n]=k_means(sample,k)
2021-12-28 13:25:55 1KB k-means
1
实时大数据分析k-means算法 报告,源码+数据集 对超市购物记录集basket_row.csv数据集中的商品名称进行聚类,实现同一类商品,不同规格汇聚成一个大类的要求。
2021-12-26 23:16:51 465KB 实时大数据分析 Hadoop Python 广工
1
K-均值可见 K-Means聚类概念的可视化 演示: :
2021-12-26 20:30:43 39KB JavaScript
1
客户细分 该项目是关于使用K-means在购物中心进行客户细分。 该项目中使用的语言是Python。
2021-12-26 15:56:11 428KB JupyterNotebook
1
多维k-means聚类算法java简单实现,导入运行KmeansTest.java可看到结果 多维k-means聚类算法java简单实现,导入运行KmeansTest.java可看到结果
2021-12-26 13:55:21 10KB 多维 k-means 聚类
1
主要介绍了python 代码实现k-means聚类分析(不使用现成聚类库),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
1
本资源包括 线性回归,Logistic回归和一般回归,K-means聚类分析,独立分析,线性判别分析,增强学习,还有混合高斯模型和EM算法的的学习笔记,往后还有更新。
2021-12-23 02:17:43 4.08MB 线性回归 K-means聚类
1
K-means聚类算法 简介 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。 K均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。 算法 先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算
2021-12-22 20:07:13 84KB ab atl b函数
1