Numerous books have been written on Radar Systems and Radar Applications. A limited set of these books provides companion software. There is need for a comprehensive reference book that can provide the reader with hands-on-like experience. The ideal radar book, in my opinion, should serve as a conclusive, detailed, and useful reference for working engineers as well as a textbook for students learning radar systems analysis and design. This book must assume few prerequisites and must stand on its own as a complete presentation of the subject. Examples and exercise problems must be included. User friendly software that demonstrates the theory needs to be included. This software should be reconfigurable to allow different users to vary the inputs in order to better analyze their relevant and unique requirements, and enhance understanding of the subject.
2022-04-15 16:56:11 6.07MB Radar
1
Test.and.Evaluation.of.Aircraft.Avionics.and.Weapon.Systems.2nd.pdf
2022-04-15 11:10:56 50.2MB test avionics aircraft
1
MicroE Systems Mercury光栅系统产品总览pdf,MicroE Systems Mercury光栅系统产品总览
2022-04-13 15:04:36 7.29MB 综合资料
1
在本文中,我们考虑了采用差分法估算未知输入的动态系统的状态。 我们提出了一种均方误差意义上的最优算法。 与传统算法相比,新算法显示出了良好的性能,并且计算量更少。 此外,数值算例表明,即使输入未知的初始值错误,新算法仍然可以很好地工作。
2022-04-12 14:27:34 391KB Decision support systems; TV
1
非线性系统 Hassan_k_khalil
2022-04-12 14:07:20 94KB 非线性系统
1
使用xgboost建模的液压系统状态监测 我们将使用各种传感器值并使用xgboost进行测试,对测试液压钻机进行条件监控。 我们的F1得分很高(在所有情况下> 0.94,在两种情况下> 0.99)。 我们还监测了特征重要性,并且该特征重要性与钻机的实际物理状况(如冷却状况,泵泄漏,液压蓄能器和阀门状况)具有很好的相关性。 可以从以下下载此分析的数据集:
2022-04-12 11:52:56 149KB 系统开源
1
Trusted platform module basics - using TPM in embedded systems.pdf
2022-04-12 10:39:21 10.71MB Trusted platform TPM embedded
1
Toward Discovery Support Systems: A Replication, Re-Examination, and Extension of Swanson’s Work on Literature-Based Discovery of a Connection between Raynaud’s and Fish Oil 迈向发现支持系统:复制、重新审视和扩展斯旺森关于基于文献发现雷诺氏病和鱼油之间联系的工作
硬件手册\S7 F_FH Systems Manual.pdfpdf,硬件手册\S7 F_FH Systems Manual.pdf
2022-04-10 22:37:26 3.37MB 综合资料
1
视觉系统实验室:在GPU上学习计算机视觉[自述文件未定期更新] 作者:Saikat Roy, 波恩大学CudaVision实验室(SS19)的存储库(主要)在PyTorch,Python3和Jupyter笔记本电脑上实现。 该项目从神经网络的基础开始,并延伸到更深层次的模型。 以下项目包含在相应的文件夹中: 项目1:Softmax回归(无autograd / Pytorch张量) 涉及使用softmax回归和手动梯度计算对MNIST数据集进行分类。 经过5次简单的迭代运行后,训练和测试集的准确度分别为0.8931和0.8866 。 项目2:多层神经网络 涉及在PyTorch上使用香草SGD进行简单的多层神经网络训练,并通过k倍蒙特卡洛交叉验证进行超参数(学习率和批量大小)搜索。 分类是在CIFAR-10数据集上完成的。 下面给出了在3072-128-128-10体系结构上进行50次
2022-04-10 21:39:44 14.94MB 系统开源
1