本文来自cnblogs,本文介绍基于区域提名的方法,包括R-CNN、SPP-net、FastR-CNN、FasterR-CNN、R-FCN和端到端(End-to-End)的目标检测方法,包括YOLO和SSD。普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。其中目标定位是不仅仅要识别出来是什么物体(即分类),而且还要预测物体的位置,位置一般用边框(boundingbox)标记,如图1(2)
2024-05-11 17:54:37 605KB
1
基于YOLOv8的SAR图像目标检测系统,覆盖数据制作、数据可视化、模型训练/评估/推理/部署全流程,最后通过 Gradio 界面进行展示。 本次分享将带领大家熟练掌握 YOLOv8 的使用,并根据自己的任务训练一个特定场景的检测器,本文将重点讲解 YOLOv8 训练框架中数据集的格式、配置文件等细节,让小白少走弯路,跟着走就能轻松训练好自己的检测器,并基于 Gradio 搭建一个简单的应用。
2024-05-08 21:26:16 212.63MB 目标检测 数据集
1
这个是从网上整理的资源,用于目标检测的摔倒检测数据集,格式是voc数据格式。 由于是网上整理的数据集,用于学习和研究。
2024-05-08 10:14:51 367.11MB 目标检测 数据集 voc格式 深度学习
1
基于深度学习的乒乓球目标检测与旋转球轨迹预测.pptx
2024-05-08 09:18:26 908KB
1
目标检测coco128数据集
2024-05-07 18:59:40 6.68MB 目标检测 数据集
1
yolov5单目相机测速测距,测速测距,pyqt,目标检测,深度学习,目标检测接单,yolov5,yolov7,可dai写 扣扣:2046删532除381 语言:python 环境:pycharm,anaconda 功能:可添加继电器或者文字报警,可统计数量 注意: 1.可定制!检测车辆,树木,火焰,人员,安全帽,烟雾,情绪,口罩佩戴……各种物体都可以定制,价格私聊另商! 2.包安装!如果安装不上可以保持联系,3天安装不上可申请退货!
2024-05-07 12:36:57 50.49MB pyqt 目标检测 深度学习 python
1
VOCdevkit: JPEGImages:飞鸟的图片; Annotations:.xml标签, txt:.txt标签,用于yolo目标检测
2024-05-06 09:34:18 878.86MB 数据集 目标检测
1
适用于图像分类 目标检测 数据集较小 无花果公开数据集
2024-05-05 10:42:44 32.2MB 目标检测 数据集
1
“史上最全AP、mAP详解与代码实现”文章([这里](http://t.csdnimg.cn/VMSSn))已经介绍了map相关原理,且给出相应简单代码实现AP方法。然将AP计算融入模型求解AP结果,可能是一个较为复杂的工程量。恰好,我也有一些这样的需求,我是想计算相关DETR的map指标。我将构造一个即插即用计算map的相关模块代码,使用者只需赋值我的模块,即可使用。同时,为了更好快速使用,我将基于通用模型yolo为基准介绍map通用模块(你有疑问,yolo已有val.py可测试map,但yolo无法测出small、medium、large等相关AP或AP0.75等结果)。本文将直接介绍计算map核心代码简单列子,在此基础上介绍整个即插即用map计算模块使用方法与代码解读。该资源便是列子内容,可参考“史上最全AP、mAP通用代码实现(即插即用-基于yolo模型)”博客。
2024-05-05 09:56:41 98KB 目标检测
1
yolov5改进 YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示: 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放; 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构; Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构; Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。 本资源包括对yolov5的改进策略和案例分析进行了详细阐述,有需要的朋友可以下载学习。
2024-05-02 16:22:56 6.5MB 目标检测 yolov5 人工智能
1