卷积神经网络(CNN)是一种深度学习模型,它在图像识别、分类、处理等任务中有着广泛应用。自从1989年Yann LeCun及其团队提出CNN以来,该领域经历了迅速的发展,尤其在手写数字识别的LeNet-5应用中取得了显著成功。CNN的设计受到了生物视觉系统的启发,特别是类似于视觉皮层中的Simple Cell和Complex Cell。 早期的神经网络在机器学习领域中曾是最热门的研究方向之一,其基于统计的学习方法相较于人工规则系统显示出了优越性。但是,随着问题复杂性的增加,传统神经网络在理论分析、训练方法、计算量和优化求解等方面遇到了挑战,导致其在科研领域中的重要性逐渐下降。在深度学习兴起之前,浅层模型如SVM、Boosting、最大熵方法等在很多应用领域取代了传统神经网络。 浅层模型虽然在有限样本和计算单元情况下能够有效地处理一些问题,但在复杂函数的表示能力以及泛化能力上存在不足。此外,浅层模型通常需要人工抽取样本特征,这既费时又依赖于人的经验和运气。因此,人们开始考虑如何自动学习特征。 深度学习的优势在于它能够通过深层非线性网络结构来学习复杂函数,而且能够从大量无标注样本集中挖掘数据的本质特征。在表示能力方面,深度模型不仅能够控制隐层节点数量,还能够在处理图像、语音等特征不明显的问题上取得更好的效果。这是因为深度模型能够在大规模训练数据上表现出其层次深和表示能力强的特点。 卷积神经网络是一种带有卷积结构的深度神经网络,其典型结构至少包括两个可训练的卷积层和两个固定卷积层(Pooling层),以及一个全连接层,最少由5个隐含层构成。CNN在图像识别上的应用效果显著,LeNet-5是其中的一个例子。在LeNet-5模型中,输入图片经过不同的层处理,各层之间包含卷积和子采样过程,其中包含滤波器、偏置、下采样和激活函数等操作,最终得到分类结果。 通过这些详细的知识点,我们可以了解到CNN如何通过其独特的网络结构和处理方式在图像识别等任务上取得了革命性的进步。从浅层模型到深度学习的转变,以及深度学习技术在自动特征学习上的优势,为机器视觉、自然语言处理等多个领域带来了根本性的变革。
2025-11-04 21:56:50 504KB
1
卷积神经网络(CNN)是一种深度学习模型,其结构设计灵感来源于动物视觉皮质细胞对图像特征的处理机制。自1980年代以来,CNN在计算机视觉领域取得了突破性进展,特别在图像识别任务中展现出卓越的能力。早期的CNN结构LeNet-5,由Yann LeCun等人于1990年提出,它能够学习图像特征并直接应用于手写数字识别,无需复杂的图像预处理。然而,受限于当时的数据量和计算能力,LeNet-5并未能在更复杂的图像处理任务中取得显著成果。 随着技术的发展,2006年后,更多的研究和改进使得CNN在多个方面得到增强,包括层数的加深和性能的提升。在此过程中,多个里程碑式的CNN架构相继问世,如AlexNet、ZFNet、VGGNet、GoogleNet和ResNet等。这些模型在国际图像识别竞赛ILSVRC中取得优异成绩,特别是ResNet,其网络深度达到AlexNet的20倍,VGGNet的8倍,能够更好地逼近复杂的非线性目标方程,并提取更丰富的特征,从而极大提升了分类、检测等视觉任务的准确性。 CNN的成功也引发了对其结构和算法优化的深入研究。卷积层(convolutional layer)、池化层(pooling layer)和全连接层(fully connected layer)共同构成CNN的基础框架。卷积层通过卷积操作提取图像特征,池化层则通过下采样降低特征维度,并保留重要信息。全连接层在特征提取的基础上进行分类或其他任务的学习。隐藏层之间的连接采用稀疏连接(sparse connectivity)和参数共享(parameter sharing)等策略,有效减少了网络参数量,加快了计算速度,并提升了模型泛化能力。此外,CNN的等变表示(equivariant representation)能力使其能够对输入图像中的平移、旋转等变化保持不变,增强了模型的鲁棒性。 CNN的应用范围非常广泛,覆盖了图像分类、目标检测、目标识别、目标跟踪、文本检测与识别以及位置估计等多个领域。其在医学影像分析、视频监控、自动驾驶等实际问题中展现出重要的应用潜力和价值。 由于CNN模型通常包含大量的参数,其训练和优化过程面临着挑战。为了应对这些挑战,研究者们提出了正则化(regularization)、dropout、批量归一化(batch normalization)和残差学习(residual learning)等多种技术来提高模型的泛化能力,避免过拟合,并加速训练过程。特别是残差学习机制的提出,极大地推动了CNN网络结构的发展,使得构建更深、更复杂的网络成为可能。 CNN作为一种深度学习模型,其独特的网络结构和学习算法使其在处理视觉感知任务方面具有独特的优势。通过不断地理论探索和技术革新,CNN在网络层数、性能优化以及应用范围等方面均取得了显著的发展和突破,成为推动现代人工智能和计算机视觉进步的关键力量。
2025-11-04 21:52:51 874KB
1
深度学习中的卷积神经网络(CNN)是一种受到生物视觉系统启发的神经网络结构,其设计目的是为了模仿人类视觉皮质细胞的工作原理。CNN能够从原始图像中自动学习到特征,并且无需复杂的图像预处理。这种网络结构的核心组成部分包括卷积层、池化层和全连接层,它们共同作用于图像数据,逐步提取和抽象特征,直到完成图像分类、目标检测等任务。 CNN的发展历程中,一个重要的里程碑是LeNet-5网络的提出。由Yann LeCun等人在1990年代研发的LeNet-5,是一个用于手写体数字识别的多层前馈神经网络,它的创新之处在于能够直接从图像数据中学习特征,而不需要复杂的预处理。LeNet-5的成功为后续的深度学习研究奠定了基础。 随着计算能力的提升和数据量的增加,研究者们开始构建更深层次的网络结构,以解决复杂图像识别的问题。AlexNet网络是其中之一,它的出现标志着CNN在图像分类任务上的巨大进步。随后,更多高效的网络结构被提出,如ZFNet、VGGNet和GoogleNet,它们通过增加网络深度和优化网络结构,显著提升了图像分类的准确率。特别是ResNet网络,它的网络深度比AlexNet多出20倍,比VGGNet多出8倍,通过引入残差连接解决了深层网络训练的难题,并成为ILSVRC 2015比赛的冠军。 卷积层是CNN的核心,它通过卷积操作提取图像的局部特征。卷积操作是一种数学上的离散卷积,可以看作是一种矩阵相乘的过程。在图像处理中,卷积核类似于图像处理中的算子,可以进行边缘检测或模糊等效果。卷积操作通过将卷积核在图像矩阵上滑动进行,从而提取图像的特征。 池化层的主要作用是减少数据的维度和特征的数量,降低计算的复杂度,并且增加模型的鲁棒性。池化操作通常有最大池化和平均池化两种类型,它们通过取局部区域的最大值或平均值来简化特征。 全连接层位于CNN的末端,它将前面卷积层和池化层提取的特征进行整合,完成最终的分类任务。全连接层类似于传统前馈神经网络中的结构,不同的是,它在全连接之前会进行适当的维度变换和特征映射。 尽管CNN在图像处理上取得了巨大的成功,但随着网络深度的增加,模型的训练变得更加困难,并且容易发生过拟合现象。为了克服这些问题,研究者提出了多种方法,包括使用正则化技术、dropout、批量归一化等策略来提高模型的泛化能力。 CNN的应用范围非常广泛,涵盖了图像分类、目标检测、目标识别、目标跟踪、文本检测与识别以及位置估计等多个领域。例如,在自动驾驶汽车中,CNN可以被用于识别道路上的行人和车辆,进行交通标志的识别以及估算车辆在道路中的位置。 总结而言,CNN作为深度学习领域的一项核心技术,在图像和视频的智能分析中发挥着至关重要的作用。从早期的LeNet-5到后来的AlexNet、ResNet等,CNN的结构不断进化,性能持续提升。卷积层、池化层和全连接层作为CNN的三个重要组成部分,共同协作完成了从简单特征到复杂模式识别的转变。随着技术的不断进步,未来CNN在图像识别等领域的应用前景将更加广阔。
2025-11-04 21:41:21 840KB
1
卷积神经网络CNN代码解析 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。今天我们将对深度学习 matlab 包 DeepLearnToolbox-master 中的 CNN 部分进行代码解析。 一、卷积神经网络模型 卷积神经网络模型由多个卷积层和池化层组成。卷积层用于提取图像特征,而池化层用于降采样。该模型使用了 MNIST 数据集作为训练样本,每个样本特征为一个 28*28 的向量。 二、DeepLearnToolbox-master 中的 CNN 部分 DeepLearnToolbox-master 是一个深度学习 matlab 包,包含多种机器学习算法,包括卷积神经网络、深度信念网络、自动编码等。 CNN 部分是 DeepLearnToolbox-master 的一个重要组成部分,包含多个函数,用于实现卷积神经网络的训练和测试。 三、函数调用关系 DeepLearnToolbox-master 中的 CNN 部分的函数调用关系如下: * Test_example_CNN:测试例程,用于设置 CNN 的基本参数规格,包括卷积、降采样层的数量,卷积核的大小、降采样的降幅等。 * cnnsetup:初始化卷积核、偏置等参数。 * cnntrain:训练 CNN,将训练数据分成批量,然后调用 cnnff 完成训练的前向过程,cnnbp 计算并传递神经网络的 error,并计算梯度(权重的修改量),cnnapplygrads 把计算出来的梯度加到原始模型上去。 * cnntest:测试当前模型的准确率。 四、cnnsetup 函数 cnnsetup 函数用于初始化 CNN 的参数,包括设置各层的 mapsize 大小,初始化卷积层的卷积核、bias 等参数。卷积核的权重设置为:-1~1 之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))。 五、卷积神经网络的训练 卷积神经网络的训练过程包括数据预处理、模型初始化、训练、测试等步骤。在训练过程中,我们需要将数据转换为相应的格式,并归一化。然后,设置网络结构及训练参数,初始化网络,对数据进行批量训练,验证模型准确率,绘制均方误差曲线。 六、结论 本文对 DeepLearnToolbox-master 中的 CNN 部分进行了代码解析,介绍了卷积神经网络模型、函数调用关系、cnnsetup 函数和卷积神经网络的训练过程。卷积神经网络是深度学习领域中的一种重要模型,广泛应用于图像识别、自然语言处理、语音识别等领域。
2025-11-02 20:24:17 570KB
1
卷积神经网络(Convolutional Neural Networks, CNNs)是一种深度学习算法,它特别适合于处理图像数据。CNN通过模拟人类视觉系统的工作方式,能够自动和有效地从图像中提取特征,用于分类、检测等图像处理任务。 图像处理是一个广泛的概念,包括了图像的获取、存储、处理和分析等过程。图像处理的目的是改善图像质量、突出重要特征、提取有用信息、进行图像识别等。卷积神经网络由于其强大的特征学习能力,在图像处理领域得到了广泛的应用。 神经网络是一种模仿生物神经系统的计算模型,它由大量的节点或“神经元”以及它们之间的连接组成。在图像处理中,CNN通常包括多个卷积层、池化层和全连接层。卷积层负责在输入图像上应用一组可学习的滤波器来提取特征,池化层则用于降低特征维度,减少计算量。全连接层则用于将学习到的特征映射到最终的输出,如类别标签或位置坐标。 Matlab是一种高性能的数值计算环境和第四代编程语言,它广泛应用于工程计算、数据分析和算法开发等领域。Matlab提供了丰富的工具箱,其中的深度学习工具箱允许用户设计、训练和部署各种深度神经网络,包括卷积神经网络。 在Matlab中实现卷积神经网络图像处理程序,首先需要准备图像数据集,并对其进行预处理,如缩放、归一化等操作。接着定义网络结构,可以是简单的序列结构也可以是复杂的多分支结构。之后是训练过程,这个阶段网络通过学习训练数据来调整其参数。使用训练好的网络对新的图像数据进行预测和处理。 随着深度学习技术的不断进步,卷积神经网络在图像处理方面的应用也日益广泛。它在医学图像分析、视频分析、自动驾驶、图像识别等众多领域都展现出了巨大的潜力。例如,在医学图像分析中,CNN可以用来识别和分类各种疾病标志,从而辅助医生进行诊断。在自动驾驶系统中,CNN可以用于实时地识别道路上的车辆、行人和交通标志,确保驾驶安全。 尽管CNN在图像处理领域取得了巨大成功,但它依然面临一些挑战。比如,它需要大量的标记数据进行训练,而数据标记是一个耗时且昂贵的过程。此外,模型的训练需要强大的计算资源,这在某些应用场景中可能会成为限制因素。因此,如何高效利用计算资源,减少对大规模标注数据的依赖,是当前研究的热点之一。 由于卷积神经网络的复杂性,相关的程序通常包括大量的代码,涉及到多个文件。例如,在Matlab中可能包括数据加载和预处理脚本、网络定义脚本、训练脚本以及评估和测试脚本等。文件压缩包内的文件名称可能反映了这些程序的不同部分。例如,"train_network.m" 文件可能包含了训练神经网络的代码,而 "image_preprocessing.m" 文件则可能包含了对图像进行预处理的代码。用户需要按照特定的顺序运行这些脚本,来完成从数据准备到模型训练和评估的整个流程。 无论是在学术研究还是工业应用中,卷积神经网络图像处理技术都展现出了强大的能力。随着技术的进一步发展和完善,它将继续在提高图像处理效率和准确性方面发挥重要作用。此外,随着硬件计算能力的提升和新的深度学习模型的提出,卷积神经网络在处理图像方面的能力有望得到进一步增强,为解决更多复杂的实际问题提供可能。
2025-11-02 19:51:48 14.04MB 图像处理 神经网络 maltab
1
本资源包含一个端到端的验证码识别深度学习项目,使用Python和TensorFlow/Keras实现。内容涵盖数据集生成、模型设计、训练、测试和优化等过程。 适用人群: 想学习深度学习项目实践的AI工程师、想开发验证码识别产品的企业技术人员 使用场景: 该项目可用于学习实践深度学习开发流程,也可以修改和扩展应用到实际包含验证码的产品中,如注册登录、网站安全等场景。 目标: 通过该项目可以掌握验证码识别任务的深度学习方法,包括数据制作、模型设计、训练和部署。可以进一步应用和扩展到其他视觉识别领域。 其他说明: 项目基于TensorFlow和Keras实现、包含详细的代码注释和使用说明、可以自定义训练模型,也提供了预训练模型、欢迎基于该项目进行改进与探讨
1
光流网络对抗性攻击与性能的影响 光流网络在自动驾驶汽车等安全关键应用中扮演着重要的角色,因此了解这些技术的稳健性非常重要。最近,有研究表明,对抗性攻击很容易欺骗深度神经网络对对象进行然而,光流网络对抗攻击的鲁棒性迄今为止还没有研究。在本文中,我们将对抗补丁攻击扩展到光流网络,并表明这种攻击可以损害其性能。 光流是指图像序列中每个像素的表观2D运动。经典公式寻求两个连续图像之间的光流(u,v),其序列使亮度恒定性最小化。在自动驾驶汽车等应用中,光流用于估计车辆周围的运动。 深度神经网络在光流估计问题上实现了最先进的性能。但是,对抗性攻击可能会欺骗这些网络,对对象进行。我们发现,损坏小于1%的图像大小的小补丁可以显着影响光流估计。我们的攻击导致噪声流估计,大大超出了攻击区域,在许多情况下,甚至完全消除了场景中对象的运动。 我们分析了成功和失败的攻击这两种架构,通过可视化他们的特征图,并比较他们的经典光流技术,这是鲁棒的这些攻击。我们还表明,这种攻击是实际的,通过将印刷图案到真实的场景。 在光流网络中,我们对比了两种架构类型下的对抗性攻击的鲁棒性。我们发现使用编码器-解码器架构的网络对这些攻击非常敏感,但我们发现使用空间金字塔架构的网络受到的影响较小。 在汽车场景中,用于自动驾驶的摄像头通常位于挡风玻璃后面。补丁攻击可以通过将补丁放置在汽车的挡风玻璃上或将其放置在场景中(例如,在交通标志或其它车辆上)。注意,当贴片具有零运动w.r.t.相机,经典的光流算法估计零光流的补丁。然而,这种工程补丁,即使它没有运动,也可能导致编码器-解码器架构的光流预测严重错误。 对抗补丁攻击可以通过将印刷图案到真实的场景来实现。我们表明,这种攻击是实际的,并且可以损害光流网络的性能。我们的攻击导致噪声流估计,大大超出了攻击区域,在许多情况下,甚至完全消除了场景中对象的运动。 我们的研究表明,对抗补丁攻击可以损害光流网络的性能,并且这种攻击是实际的。因此,在自动驾驶汽车等安全关键应用中,了解光流网络的鲁棒性非常重要。 在未来,我们计划继续研究光流网络的鲁棒性,并探索新的方法来改进它们的性能。在自动驾驶汽车等安全关键应用中,了解光流网络的鲁棒性非常重要,因此,我们的研究结果对这些应用具有重要的影响。 我们认为,光流网络的鲁棒性是一个重要的研究方向,需要继续研究和探索。我们的研究结果将有助于提高光流网络的性能,并且提高自动驾驶汽车等安全关键应用的安全性。 我们的研究表明,对抗补丁攻击可以损害光流网络的性能,并且这种攻击是实际的。我们的研究结果对自动驾驶汽车等安全关键应用具有重要的影响,并且将有助于提高光流网络的鲁棒性和性能。
2025-10-31 14:29:48 2.53MB 对抗攻击 神经网络
1
HiFormer:基于CNN和Transformer的医学图像分割方法 HiFormer是一种新颖的医学图像分割方法,它将卷积神经网络(CNN)和Transformer结合,以解决医学图像分割任务中存在的挑战性问题。该方法通过设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器,来确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 医学图像分割是计算机视觉中的主要挑战之一,它提供了有关详细解剖所需区域的有价值的信息。这些信息可以极大地帮助医生描述损伤、监测疾病进展和评估适当治疗的需求。随着医学图像分析的日益使用,高精度和鲁棒性的分割变得越来越重要。 卷积神经网络(CNN)具有提取图像特征的能力,已被广泛用于不同的图像分割任务。然而,CNN模型在医学图像分割任务中的性能受到限制,因为它们只能在局部范围内捕获特征,而忽视了长距离依赖关系和全局上下文。 Transformer最初是为了解决这个问题而开发的,但它们无法捕获低级功能。与此相反,它表明,局部和全局功能是至关重要的密集预测,如分割在具有挑战性的上下文中。在本文中,我们提出了HiFormer,这是一种有效地桥接CNN和Transformer用于医学图像分割的新方法。 具体来说,我们设计了两个多尺度特征表示使用的开创性Swin Transformer模块和基于CNN的编码器。为了确保从上述两种表示中获得的全局和局部特征的精细融合。实验结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。 在近期的研究中,已经开发了一些基于Transformer的方法来解决CNN在医学图像分割任务中的限制。例如,DeiT提出了一种有效的知识蒸馏训练方案,以克服视觉变换器需要大量数据来学习的困难。Swin Transformer和pyramid visionTransformer试图分别通过利用基于窗口的注意力和空间减少注意力来降低视觉变换器的计算复杂度。CrossViT提出了一种新颖的双分支Transformer架构,可提取多尺度上下文信息,并为图像分类提供更细粒度的特征表述。DS-TransUNet提出了一种双分支Swin Transformer,用于在编码器中捕获不同的语义尺度信息,以执行医学图像分割任务。HRViT将多分支高分辨率架构与视觉变换器连接起来,用于语义分割。 然而,这些方法有一些障碍,阻止他们获得更高的性能:1)它们不能在保持特征一致性的同时,捕获全局和局部特征;2)它们需要大量的数据来学习和训练。因此,我们提出了HiFormer,以解决这些问题,并提供了一种更好的医学图像分割方法。 在实验部分,我们在多个医学图像分割数据集上进行了实验,结果表明,HiFormer在计算复杂度、定量和定性结果方面优于其他基于CNN、基于变换器和混合方法的有效性。我们的代码在GitHub上公开,供其他研究者使用和改进。
1
内容概要:本文是一份关于基于BP神经网络的模式识别实验报告,详细介绍了BP神经网络的基本结构与原理,重点阐述了前向传播与反向传播算法的实现过程。通过构建包含输入层、隐含层和输出层的简化神经网络,利用“异或”真值表进行模型训练与验证,并进一步应用于小麦种子品种分类的实际案例。实验涵盖了数据预处理(如归一化)、网络初始化、激活函数选择(Sigmoid)、误差计算与权重更新等关键步骤,提供了完整的Python实现代码,并通过交叉验证评估模型性能,最终实现了较高的分类准确率。; 适合人群:具备一定编程基础和数学基础,正在学习人工智能、机器学习或神经网络相关课程的本科生或研究生,以及希望深入理解BP算法原理的初学者。; 使用场景及目标:①理解BP神经网络中前向传播与反向传播的核心机制;②掌握反向传播算法中的梯度计算与权重更新过程;③通过动手实现BP网络解决分类问题(如XOR逻辑判断与多类别模式识别);④学习数据预处理、模型训练与评估的基本流程。; 阅读建议:建议结合实验代码逐段调试,重点关注forward_propagate、backward_propagate_error和update_weights等核心函数的实现逻辑,注意训练与测试阶段数据归一化的一致性处理,以加深对BP算法整体流程的理解。
1
子神经网络 NeurIPS 2020论文存储库: 作者: , ,, 要使用SubGNN,请执行以下操作: 安装环境 准备数据 在config.py修改PROJECT_ROOT 修改适当的config.json文件 训练和评估SubGNN 安装环境 我们提供了一个yml文件,其中包含SubGNN的必要软件包。 一旦安装了 ,就可以创建如下环境: conda env create --file SubGNN.yml 准备数据 通过(1)下载我们提供的数据集或按照prepare_dataset文件夹README中的步骤来为SubGNN准备数据,(2)生成合成数据集或(3)格式化您自己的数据。 真实数据集:我们将发布四个新的真实数据集:HPO-NEURO,HPO-METAB,PPI-BP和EM-USER。 您可以 从Dropbox下载这些文件。 您应该解压缩文件夹并将config.py的P
2025-10-21 11:52:49 87KB embeddings graph-neural-networks Python
1