常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Flyback)之分,下面对这几种电路的工作原理分别加以介绍。
2023-02-02 15:08:03 165KB 电源管理
1
功率因数校正手册(安森美)pdf,功率因数校正手册(安森美)
2022-12-01 22:15:51 2.63MB 开关电源
1
UC3854可控功率因数校正电路设计 德州仪器 PHILIP C. TODD 上期杂志介绍了用于功率因数校正的升压型预稳压器的概念与设计以及UC3854的结构图,本期和下期杂志将给出功率因数校正电路的详细设计流程。 设计流程 功率级设计 图6中,我们将使用一个 250 W的升压转换器来作为功率级的设
1
应用笔记AN1106介绍了功率因数校正(PFC)方法。应用笔记AN2520介绍了无传感器磁场定向控制 (FOC)方法。这些应用笔记中提供了详细的数字设计和实现技术。本应用笔记是上述应用笔记的补充。单片机(MCU)成本低且性能高,并结合了许多功能强大的电子外设,如模数转换器(Analog-toDigital Converter, ADC)、脉宽调制器(Pulse-Width Modulator, PWM)、片上运放和比较器,有助于简化数字设计和轻松实现上述复杂应用。 大多数电机控制系统通常将PFC作为系统的第一级。 如果没有PFC输入级,注入电流会由于逆变器的开关元件而产生较大的谐波分量。此外, 由于电机负载具有高感性,输入电流会使输入系统产生很大的无功功率,从而降低整个系统的效率。 PFC级是电机控制应用的前端转换器, 可提供性能更优的输出电压稳定度,减少输入电流的谐波分量。在应用中实现数字PFC的首选方法是采用带有平均电流模式控制的标准升压转换器拓扑。使用双电流无传感器FOC方法在速度控制模式下驱动PMSM。一些应用无法部署位置或速度传感器,使用无传感器FOC技术能够克服这种限制。通过测量相电流估算PMSM的速度和位置。凭借转子上永磁体提供的恒定转子磁场, PMSM在家电应用中十分高效。与感应电机相比,相同给定规格的PMSM功能更强大。此外,由于PMSM为无刷电机,因此噪声比直流电机更小。因此,通常为此应用选择PMSM。
2022-07-16 14:50:34 1.1MB Microchip  PFC 无感 FOC
1
控制技术的数字化是开关电源的发展趋势。相对于传统的模拟控制技术,采用数字控制技术的功率因数校正(PFC)具有显著的优点。详细讨论了采用数字信号处理器(DSP)作为控制核心时的设计事项和方法,最后提出了数字控制技术有待解决的问题。
1
单相Boost功率因数校正电路(PFC)设计与仿真 随着电力电子技术的发展,电力电子产品被广泛应用,对电网造成了严重的污 染,对电力电子技术提出了更高的要求。采用现代高频功率变换技术的有源功率因 数校正技术是解决谐波污染最有效的手段,所以本文主要对单相Boost功率因数校 正电路技术进行了分析和研究。 本文首先介绍了功率因数校正技术的研究背景和技术发展,对功率因数校正技 术进行简单的分类介绍,,对PFC电路 控制电路进行设计。最后对实验设计参数进行仿真,对BoostPFC电路进行功能验 证。
2022-04-29 11:33:35 52KB matlab/simulink boost功率因数校正
1
周志敏)开关电源功率因数校正电路技术与应用
2022-04-13 19:27:38 7.03MB 电源功率因数
1
  本文介绍功率因数校正(PFC)的simulink仿真实现,并用PID控制器将功率因数调整为近似1。最后将控制器离散化,用C语言的形式编写代码实现PID控制simulink中的模型实现同样的效果。(仅作为学习参考作用,若有不足请指出讨论。) 博客地址:https://blog.csdn.net/qq_39400324/article/details/123210674
1
有源功率因数校正可减少用电设备对电网的谐波污染,提高电器设备输入端的功率因数。详细分析了有源功率因数校正APFC(active power factor corrector)原理,采用平均电流控制模式控制原理,设计了基于UC3854BN芯片的一种有源功率因数校正电路方案,着重分析了电路主要参数的选择和设计。实践证明,采用APFC后,大大减小了输入电流的谐波分量,实现了功率因数校正。
1
本文首先给出了基于MC56F8323的功率因数校正应用的控制原理以及设计方法,最后做出了一台500W数字功率因数校正模块样机,并用实验验证了数字控制系统的优良性能。
1