针对传统去雾算法需要人工提取特征,对比度低、信噪比低等问题, 提出一种基于多特征融合的卷积神经网络去雾算法。利用卷积神经网络算法模拟人类视觉系统对雾天图像进行层次化处理, 实现自动提取特征。算法采用直接从雾天图像到清晰无雾图像映射的学习方式, 该映射由特征提取、多尺度特征融合和浅层深层特征融合联合实现。多尺度特征融合提升网络对图像细节的重建, 浅层深层特征融合则将浅层卷积得到的轮廓信息和深层卷积得到的细节信息进行融合, 提升去雾重建的整体效果。实验结果表明, 相比于单一尺度网络, 多特征融合网络的峰值信噪比提高了1.280 dB。本文算法对自然雾天图像去雾效果明显, 细节信息和对比度均优于其他算法, 为去雾方法的研究提供了新思路。
2021-12-08 20:51:31 10.84MB 图像处理 去雾重建 卷积神经 多尺度特
1
夜间图像光照不均匀, 存在色偏, 去雾难度较大。目前图像去雾算法主要针对白天场景, 有关夜间图像去雾算法的研究较少。基于结构-纹理分层模型提出新的夜间图像去雾算法, 将夜间有雾图像分解为结构层和纹理层。在结构层采用中值滤波器估计环境光, 利用加权范数L1正则化模型对其进行优化, 并进行去雾和颜色校正处理;在纹理层利用离散余弦变换系数估计透射率。最终融合纹理层与去雾后的结构层得到去雾图像。实验结果表明, 采用该算法对夜间图像去雾后图像细节清晰, 颜色自然, 去雾效果显著。
1
参数说明: I: 已有的图像(待去雾的图像) J: 要恢复的无雾图像 A: 全球大气光成分,分r、g、b三个通道,三维向量 te: 透射率矩阵 t: 滤波平滑后的透射率矩阵 求出每个像素RGB分量 中的最小值,存入一幅和原始图像大小相同的灰度图中,然后再对这幅灰度图进行最小值滤波,滤波的半径由窗口大小决定。暗通道先验的理论指出,J_dark会趋向于0。
2021-11-15 17:08:13 9.06MB 1、python 2、opencv 3、图像去雾
1
图像去雾算法opencv实现图像去雾算法opencv实现 暗原色的opencv实现
2021-11-02 19:57:50 4.05MB 图像去雾 opencv 暗原色
1
图像清晰化处理,使用c++开发,利用开源opencv库,运行时需自行配置opencv库
2021-10-31 19:23:16 27.85MB opencv c++
1
针对暗通道先验在天空区域的失效问题,提出了一种基于亮度模型融合的改进暗通道先验图像去雾算法。首先通过Canny算子分割得到天空区域与非天空区域;其次,利用亮度模拟景深,重构亮度透射率,并通过与暗通道透射率的融合构成天空区域透射率,最后的透射率图经由快速引导滤波进行精细化处理;大气光值选择抗干扰能力更强的天空区域中像素强度值前0.1%的像素中值;最后,经由大气散射模型恢复出无雾图像。实验结果表明,该算法针对含雾图像能够有效地恢复出图像的细节并抑制光晕现象,明亮度适宜,颜色自然。
2021-10-26 16:41:51 6.96MB 图像处理 亮度模型 融合透射 大气散射
1
matlab视频图像去雾算法 基于gui界面的,可更改代码,我的博客里也有相关教程
2021-09-27 12:13:23 14KB matlab 图像去雾
1
本科优秀毕业论文——图像去雾算法的研究与实现
2021-09-01 19:08:43 10.15MB 资源分享达人 去雾算法 图像处理
贝叶斯框架下的单幅图像去雾算法 王多超 王永国 董雪梅 胡晰远 彭思龙
2021-07-14 18:11:49 656KB 贝叶斯框架 去雾算法
1