《电子科技大学基础工程训练:机电一体化实训设计与PLC编程》 机电一体化是现代工业生产中的重要技术领域,它融合了机械、电子、控制、计算机等多个学科,旨在提高设备的自动化程度和生产效率。在电子科技大学的基础工程训练中,机电一体化实训设计是一个不可或缺的环节,学生通过实际操作和编程学习,能深入理解这一领域的核心概念和技术。 PLC(可编程逻辑控制器)是机电一体化系统中的关键组成部分,用于控制设备的运行逻辑。在2018年的实训项目中,PLC编程模块被证实是可行且实用的教学工具。PLC的优势在于其灵活性和可靠性,可以适应各种复杂的工业环境,通过编程实现对机械设备的精确控制。 在PLC编程中,学生需要掌握基本的编程语言,如Ladder Diagram(梯形图)或Structured Text(结构化文本)。梯形图因其直观性,常被用于初学者的学习。它模拟了继电器电路的工作方式,使得电气工程师能够快速上手。而Structured Text则更适合高级编程和复杂算法的实现。 在机电一体化实训设计中,学生会接触到以下几个关键知识点: 1. **系统设计**:理解系统的需求,设计合理的机械结构和电气控制方案,考虑设备的安全性和稳定性。 2. **传感器与执行器**:学习如何选用合适的传感器检测物理量,并用执行器执行控制指令,如电动机、气缸等。 3. **PLC硬件选型与接线**:了解不同品牌和型号的PLC硬件特性,正确连接输入/输出模块,确保通信正常。 4. **PLC程序编写**:根据设计要求,编写控制逻辑,包括条件判断、循环、定时器、计数器等元素。 5. **故障诊断与调试**:学会通过监控和诊断工具排查系统故障,优化程序以提高系统性能。 6. **安全规范**:学习并遵循电气安全操作规程,防止在实验过程中发生安全事故。 7. **实践操作**:通过实际操作,增强动手能力和问题解决能力,理解理论知识与实际应用的结合。 在2018年的实训中,学生可能已经接触到了这些内容,并通过实际项目的实施,掌握了PLC编程的基本技巧。这种实践教学模式对于培养学生的创新思维和工程实践能力具有重要意义,为他们未来在机电一体化领域的发展打下了坚实的基础。
2025-11-29 10:02:00 9KB 机电一体化
1
《jQuery基础教程 第4版 》是jQuery经典技术教程的最新升级版 涵盖jQuery 1 10 x和jQuery 2 0 x 本书前6章以通俗易懂的方式讲解了jQuery的核心组件 包括jQuery的选择符 事件 动画 DOM操作 Ajax支持等 第7章和第8章介绍了jQuery UI jQuery Mobile及利用jQuery强大的扩展能力开发自定义插件 随后的几章更加深入地探讨了jQuery的各种特性及一些高级技术 附录A特别讲解了JavaScript中闭包的概念 以及如何在jQuery中有效地使用闭包 附录B讲解了使用QUnit测试JavaScript代码的必备知识 附录C给出了jQuery API的快速参考   《jQuery基础教程 第4版 》注重理论与实践相结合 由浅入深 循序渐进 适合各层次的前端Web开发人员学习和参考 注意:此版本非扫描版 是真正的电子版 推荐学习jquery的朋友收藏 ">《jQuery基础教程 第4版 》是jQuery经典技术教程的最新升级版 涵盖jQuery 1 10 x和jQuery 2 0 x 本书前6章以通俗易懂的方式讲解了jQuery的核心组件 包括jQuery的选择符 事件 动画 DOM操作 Ajax支持等 第7章和第8章介绍了jQuery UI j [更多]
2025-11-28 16:13:08 8.41MB javascript jquery
1
以太网交换机是现代网络基础设施的核心组成部分,它在局域网(LAN)中起着至关重要的作用。本文将深入探讨以太网交换机的基础知识、二、三层交换机的工作原理以及交换机的常见特性与技术。 我们来了解以太网交换机的基础知识。以太网交换机是一种多端口设备,它能连接多台计算机或网络设备,并通过存储转发机制实现数据包的交换。与传统的共享介质网络,如集线器不同,交换机能够提供多个独立的冲突域,极大地提高了网络的带宽利用率和性能。每个端口都可以视为一个独立的冲突域,使得在同一时间,多对设备可以同时进行通信,显著提升了网络效率。 接下来,我们讨论二层和三层交换机的基本原理和转发流程。二层交换机主要工作在OSI模型的数据链路层,负责MAC地址的学习和帧的转发。当接收到数据帧时,交换机会检查其目的MAC地址,然后根据MAC地址表将帧转发到相应端口。如果目标MAC不在表中,交换机会泛洪(flooding)该帧到所有其他端口,以便接收设备能捕获到。而三层交换机则具备路由功能,它不仅处理MAC地址,还能处理IP地址。三层交换机在接收到数据包后,会查看网络层的信息,如IP地址,然后根据路由表决定最佳路径进行转发。 以太网交换机还具备多种特性和技术,例如: 1. VLAN(虚拟局域网):VLAN允许在物理上分离的网络设备之间创建逻辑上的网络分区,提高网络管理和安全性。 2. QoS(服务质量):QoS提供流量管理,确保关键服务如语音和视频通话的优先级,避免网络拥塞。 3. STP(生成树协议)和RSTP(快速生成树协议):防止网络中的环路,确保数据流的单向路径。 4. trunking(中继):允许多个VLAN通过单个物理链路传输,提高网络带宽利用率。 5. Port Security:限制接入交换机的设备数量,防止未经授权的设备接入网络。 6. Link Aggregation Control Protocol (LACP):组合多个物理链路形成一个逻辑链路,增加带宽并提高冗余性。 以太网交换机是网络设计的关键组件,理解和掌握其基本原理和技术对于构建高效、安全的网络环境至关重要。通过深入学习和实践,你可以更好地优化网络性能,提高网络的稳定性和可靠性。
2025-11-28 10:23:52 1.43MB 以太网培训
1
内容概要:本文档包含了涵盖业务场景理解、SQL应用技巧、统计学理论及运用、机器学习模型构建及分析等方面共计101条数据分析领域的常见面试试题,并提供了详细的答案。这些问题不仅考察应聘者的SQL能力和基本的统计数据工具操作能力,还包括了他们能否有效进行业务分析,并从中获得有价值的洞察力。同时深入探讨了SQL的基础知识和技术应用层面的进阶内容,让读者能够更好地理解和学习SQL语言及其功能,在大数据环境中处理复杂的数据分析任务。 适用人群:适用于正在准备数据分析职位面试的专业人士,也适用于初学者及具有一定SQL基础的操作员。 使用场景及目标:① 对应聘者进行数据科学岗位的技术考核和评估;② 数据分析新手了解和练习SQL语言和数据分析的最佳实战指南。
2025-11-27 22:44:01 3.24MB SQL 机器学习
1
道路交通基础设施韧性提升:理论与实践 道路交通基础设施是社会经济发展的重要支柱,对于人民福祉和国家经济社会发展具有深远影响。在面对极端天气和自然灾害时,交通基础设施的韧性显得尤为重要。韧性交通基础设施不仅关乎资产自身的抗灾能力,还涉及到整个交通网络的可靠性和用户在灾害中的安全与便捷。 李辉教授,同济大学交通运输工程学院的教授和博士生导师,专注于交通基础设施的可持续性和韧性研究。他的工作涵盖了从学术研究到实际应用的多个层面,包括博士后研究和指导研究生进行相关课题探索。李辉教授所在的同济团队——同济可持续交通研究中心(CST),致力于推动交通基础设施韧性提升的理论与实践。 在气候变化的背景下,交通基础设施面临着更大的灾害风险。例如,全球公路和铁路系统中有相当一部分暴露在洪水等灾害风险下,而交通基础设施的破坏会导致巨大的经济损失。国内外的重大灾害事件,如汶川地震、北京特大暴雨、波多黎各飓风等,都突显了交通基础设施在抵御自然灾害方面的脆弱性。交通中断所造成的损失往往远超过设施本身的破坏,因此,构建韧性交通基础设施显得尤为必要。 我国在韧性交通基础设施建设方面的需求日益增长。政府已将“交通网韧性”纳入国家综合立体交通网规划和交通强国建设纲要之中,强调要提升交通系统的应急保障能力和弹性。借鉴发达国家的经验,如美国、日本和英国,我国正在规划和打造能够有效应对极端情况的韧性交通基础设施。 韧性交通基础设施的建设涵盖了三个方面:资产韧性、网络韧性以及用户韧性。资产韧性旨在降低全生命周期成本,提高设施的耐久性和抗灾能力;网络韧性则关注于提供更可靠的交通运输服务,确保在灾害发生时仍能保持基本的运输功能;用户韧性则关注于减少灾害对人民生活和社会经济的总体影响。 在韧性城市建设中,交通系统的韧性是不可或缺的一环。自2008年汶川地震以来,我国对韧性城市的规划和建设逐渐重视,出台了一系列法规和政策来促进交通基础设施的韧性提升。未来,我国将持续致力于构建能够适应气候变化、有效抵御灾害、保障人民安全出行的交通强囯。
2025-11-27 17:08:41 8.2MB
1
在IT行业中,尤其是在软件开发和编程领域,"窗口后台区域截图-易语言"是一个与图形用户界面(GUI)处理和图像捕获相关的技术主题。易语言是一种简洁、易学的编程语言,它提供了丰富的功能库,使开发者能够方便地进行各种操作,包括屏幕截图。 在标题"窗口后台区域截图"中,我们关注的是获取屏幕上非活动窗口或后台窗口的图像。这通常涉及到多层窗口管理,以及操作系统级别的交互。在Windows操作系统中,后台窗口是指那些当前并未处于焦点状态,但仍然显示在屏幕上的窗口。获取这些窗口的截图对于开发者来说,可能是为了实现诸如监控、调试或者自动化测试等目的。 描述中的"窗口后台区域截图"进一步明确了我们要探讨的是如何捕获屏幕上的特定窗口,而不仅仅是整个桌面。这可能涉及到使用特定的API函数,如Windows API中的`GetWindowDC`和`BitBlt`,用于获取窗口设备上下文(DC)并复制像素数据。同时,开发者可能还需要了解窗口句柄(HWND)的概念,这是Windows系统中标识窗口的独特标识符。 在标签"高级教程源码"中,我们可以推测这个压缩包文件可能包含了一段使用易语言编写的高级示例代码,用于教学或学习如何实现上述功能。通过分析这段源码,初学者可以了解到如何在易语言中调用系统API,处理窗口句柄,以及如何进行屏幕截图和图像处理。这是一份宝贵的教育资源,可以帮助开发者提升其在易语言环境下的编程技能。 至于压缩包内的"窗口后台区域截图(凌晨孤星作品).e"文件,很可能是易语言的源代码文件。"凌晨孤星"可能是代码作者的昵称,而".e"是易语言的源代码文件扩展名。打开这个文件,我们可以看到具体的代码实现,包括如何找到目标窗口,获取其设备上下文,以及如何执行截图和保存图片。源代码阅读和分析有助于深入理解易语言的语法和程序设计原理。 "窗口后台区域截图-易语言"是一个涉及屏幕捕获技术和易语言编程实践的主题。通过学习和研究提供的源代码,开发者可以增进对操作系统级别的编程理解,尤其是与Windows API的交互,以及如何利用易语言实现复杂功能。这种知识对于软件开发者,尤其是对Windows平台有兴趣的开发者来说,是非常有价值的。
2025-11-26 17:14:00 23KB 高级教程源码
1
一生中有幸成为新发现或新思想的一部分的机会屈指可数。某些思想或革新会极大地改变我们所生活的 世界。想一想如果生物科学家完成了整个人类基因的绘制 — 确定了DNA结构的最后一个基因,美国国 立卫生研究院实验室会作何感想。或者当Bardeen、Brattain和Shockley演示第一个引发通信变革的晶 体管时,贝尔实验室会有什么反应。 在过去的50年里,科学家和工程师取得了数量惊人的科技突破。他们提出的思想改变了我们的思维方式 和几乎每一件事情的做事方法。例如,连接研发中心计算机的愿望演变成了今天的互联网 - 对于这项 创新,很多人认为这是我们一生中所看到的最重要的、改变了商业、社会和政治状况的工具。 如今,我们能够再一次见证并分享这些罕见的技术发现。电子行业正在经历一场根本性的转变 - 从并 行I/O电路到串行I/O连接功能解决方案的转变。作为一种能够降低系统成本、简化系统设计并提供所需 的扩展性,从而满足新的带宽需求的手段,这种转变受到了各行业企业的推动。 Xilinx坚定地相信串行连接功能解决方案最终将应用到可能的电子产品的方方面面。简单地举几个例子, 这种解决方案可用于芯片到芯片
2025-11-25 08:56:51 96.59MB fpga开发 fpga
1
### 开关电源EMI设计小结 #### 一、开关电源EMI源解析 开关电源在运行过程中会产生电磁干扰(EMI),这些干扰主要来源于内部元件的快速切换以及外部环境的影响。 1. **功率开关管**:功率开关管在工作过程中处于高速开关状态,其电压变化率(dv/dt)和电流变化率(di/dt)都非常高,这使得功率开关管成为产生EMI的主要源头之一。由于快速变化的电流和电压,功率开关管不仅能够产生电场耦合干扰,还能产生磁场耦合干扰。 2. **高频变压器**:高频变压器中的漏感会导致电流快速变化(di/dt),这种变化会产生较强的磁场耦合干扰。因此,高频变压器也是EMI的一个重要来源。 3. **整流二极管**:整流二极管在反向恢复过程中会产生高dv/dt,进而导致强烈的电磁干扰。这一过程通常发生在二极管从正向导通状态转变为反向截止状态时,反向恢复电流的断续会在引线电感和杂散电感中产生较高的电压变化率。 4. **PCB设计**:PCB板的设计质量直接影响到EMI的抑制效果。良好的PCB布局可以有效地减少EMI源之间的耦合,从而降低EMI的产生。 #### 二、EMI传输通道分类及特点 EMI可以通过传导和辐射两种方式传播,具体包括: 1. **传导干扰**: - 容性耦合:通过电容性连接,如寄生电容,将干扰信号从一个电路传到另一个电路。 - 感性耦合:通过互感效应将干扰信号从一个电路传递到另一个电路。 - 电阻耦合:主要包括: - 公共电源内阻产生的电阻传导耦合。 - 公共地线阻抗产生的电阻传导耦合。 - 公共线路阻抗产生的电阻传导耦合。 2. **辐射干扰**: - 在开关电源中,元器件和导线可以视为天线,产生电磁波。根据电偶极子和磁偶极子理论,二极管、电容、功率开关管可以被视为电偶极子;电感线圈则被视为磁偶极子。 - 当存在屏蔽体时,需要考虑屏蔽体的缝隙和孔洞对电磁波的泄露影响。 #### 三、EMI抑制的九大措施 针对开关电源EMI的产生机理,可以采取以下九项措施来有效抑制EMI: 1. **减小dv/dt和di/dt**:通过优化开关管的驱动电路或者使用软开关技术来降低电压和电流变化率,从而减少EMI的产生。 2. **压敏电阻的应用**:利用压敏电阻来吸收瞬态过电压,保护电路免受浪涌电压的损害。 3. **阻尼网络抑制过冲**:在电路中加入RC阻尼网络来抑制电压和电流的过冲现象。 4. **采用软恢复特性的二极管**:选用具有较慢反向恢复时间的二极管,减少反向恢复过程中产生的EMI。 5. **有源功率因数校正**:通过采用有源功率因数校正(APFC)技术来改善电源效率,减少谐波失真。 6. **电源线滤波器的设计**:合理设计电源线滤波器来过滤掉高频干扰。 7. **合理的接地处理**:良好的接地设计可以有效减少EMI的传播。 8. **有效的屏蔽措施**:通过使用屏蔽材料和技术来隔离干扰源。 9. **合理的PCB设计**:优化PCB布局,如正确布置电源和地线、合理布线等,以减少EMI。 #### 四、高频变压器漏感控制 1. **选择合适磁芯**:选择合适的磁芯材料,降低变压器的漏感。 2. **减小绕组间的绝缘层**:使用更薄的绝缘材料,如“黄金薄膜”,既能保证足够的绝缘性能,又能降低漏感。 3. **增加绕组间的耦合度**:通过优化绕组结构来提高耦合度,从而降低漏感。 #### 五、高频变压器的屏蔽 为了防止高频变压器的漏磁对周边电路造成干扰,可以采用屏蔽带来屏蔽高频变压器的漏磁场。屏蔽带通常由铜箔制成,并进行接地处理。此外,还可以通过使用环氧树脂或玻璃珠胶合剂来固定磁芯,减少高频变压器在工作过程中产生的噪音。 通过对以上知识点的学习,我们可以了解到开关电源EMI设计的关键要素及其解决方案,这对于提高开关电源的性能和可靠性具有重要意义。
2025-11-24 17:23:53 68KB 开关电源 基础知识 课设毕设
1
Maxwell电机,Maxwell电磁仿真分析与振动分析 1、Maxwell仿真建模基础 2、Maxwell电磁分析仿真理论与分析计算 3、Maxwell电磁模型导入workbench中计算模态及频响 4、电磁力耦合到结构场谐响应分析等 收到电机设计及电磁分析的,也可进行相关内容的沟通和交流;可交流电机设计电磁学理论基础知识以及电磁仿真多案例 Maxwell电机是基于Maxwell电磁理论设计的电机模型,其涉及到的Maxwell电磁仿真分析与振动分析是电机设计中的重要环节。Maxwell电磁仿真分析主要包含几个方面:首先是Maxwell仿真建模基础,这是进行电磁仿真分析的前提和基础,涉及到电机模型的构建,以及模型的参数化定义,确保仿真能够准确反映物理世界中的电磁特性。其次是Maxwell电磁分析仿真理论与分析计算,这部分深入探讨了如何根据Maxwell方程组进行仿真分析,以及如何进行相关的分析计算,以预测电机在实际运行中可能出现的电磁现象和特性。最后是Maxwell电磁模型导入workbench中计算模态及频响,这是将电磁仿真模型导入到通用仿真软件中进行更为复杂的机械振动分析,以及电机对不同频率信号的响应情况。 除了电磁分析,振动分析也是电机设计中不可缺少的一部分。振动分析主要是考察电机在运行过程中产生的振动,以及振动对电机性能的影响。通过振动分析可以识别和分析电机运行中可能出现的不正常振动,找到振动的来源,并通过设计优化减少或消除不良振动,从而提高电机的稳定性和可靠性。 此外,在电磁仿真分析与振动分析的过程中,还涉及到将电磁力耦合到结构场中的谐响应分析。这类分析旨在研究电磁力对电机结构产生的动态响应,即在电机工作频率范围内结构对力的响应情况。通过此类分析,工程师可以预测电机在受到动态电磁力作用时的响应特性,确保电机设计能够满足耐久性与性能要求。 电机设计和电磁分析是一个复杂的工程问题,需要结合电机学理论和仿真计算工具。Maxwell仿真软件是电机设计和电磁分析中常用的工具之一,它能够帮助工程师快速构建电机模型,进行电磁场分析,预测电机的性能指标。通过使用Maxwell仿真软件,可以实现从电机设计的初步概念到详细设计的全过程仿真验证,提高了设计的效率和准确性。 在电机电磁仿真分析与振动分析技术方面,还涉及到了多种案例的研究,每个案例都可能涉及到不同的电机类型、不同的工作环境、不同的性能要求。通过对这些案例的深入研究,工程师能够积累宝贵的经验,提升对电机设计和电磁仿真分析的理解,为未来的设计工作打下坚实的基础。 电机电磁仿真分析与振动分析的内容广泛,不仅包括理论知识的学习,还包括实践技能的掌握。工程师在进行电磁仿真分析时,需要熟悉仿真软件的使用,理解电磁场理论,掌握电机设计的基本原则和方法。同时,还需要关注电磁振动分析的最新进展,应用现代分析技术,如有限元分析(FEA),来解决复杂的工程问题。 电机电磁仿真分析与振动分析不仅是电机设计的核心环节,也是提高电机性能、降低开发成本、缩短研发周期的重要手段。通过这种分析手段,可以在电机制造之前预测和解决可能出现的问题,为制造出性能优良、可靠稳定的电机产品提供保障。 电机电磁仿真分析与振动分析是电机设计领域的重要组成部分,它涉及到电磁学、材料学、力学和计算机科学等多个学科的知识和技术。通过对电机进行仿真分析和振动分析,可以更深入地了解电机的运行状态,为电机的设计和优化提供理论依据和技术支持。电机设计者应当充分利用现代仿真分析工具,结合理论分析和实验验证,不断优化电机的设计,提高电机的整体性能。
2025-11-24 13:43:01 736KB gulp
1
UML基础知识讲解及使用Rose建模的一本非常不错的教程,对面向DMA的开发很有帮助。
2025-11-24 08:20:46 19.99MB UML
1