基于FPGA的高精度五级CIC滤波器设计与Verilog实现,基于FPGA的CIC滤波器设计与实现:五级积分梳状滤波器Verilog代码优化与位处理策略,基于FPGA的积分梳状CIC滤波器verilog设计 1.系统概述 这里设计的五级CIC滤波器。 那么其基本结构如上图所示,在降采样的左右都有五个延迟单元。 但是在CIC滤波的时候,会导致输出的位大大增加,但是如果单独对中间的处理信号进行截位,这会导致处理精度不够,从而影响整个系统的性能,所以,这里我们首先将输入的信号进行扩展。 由于我们输入的中频信号通过ADC是位为14,在下变频之后,通过截位处理,其输出的数据仍为14位,所以,我们将CIC滤波的输入为14位,但是考虑到处理中间的益处情况以及保证处理精度的需要,我们首先将输入位扩展为40位,从而保证了处理精度以及溢出的情况。 这里首先说明一下为什么使用的级别是5级。 从硬件资源角度考虑,CIC滤波器的级数太高,会导致最终输出的数据位很大,通过简单的验证,当CIC的级数大于5的时候,输出的位>50。 这显然会导致硬件资源的大量占用,如果CIC级数太小,比如1,2
2025-06-25 20:33:05 240KB csrf
1
CST可调谐太赫兹超材料吸收器仿真教学,石墨烯,二氧化钒,锑化铟等材料设置 包括建模过程,后处理,吸收光谱图教学等 包括带吸收器、窄带,以及窄带吸收器设计 ,CST仿真; 可调谐太赫兹超材料吸收器; 石墨烯; 二氧化钒; 锑化铟; 建模过程; 后处理; 吸收光谱图教学; 带吸收器设计; 窄带吸收器设计; 窄带吸收器设计。,CST太赫兹超材料吸收器教学:材料设置与仿真解析 太赫兹波段处于微波与红外线之间,具有独特的物理性质,近年来成为材料科学和电子工程领域的研究热点。在这一波段,超材料因其具有调整光波传播特性的能力而受到广泛关注,特别是在吸收器设计方面,超材料展现出极大的应用潜力。太赫兹超材料吸收器可以实现对太赫兹波的吸收,并且通过特定的设计使其在特定频率下具有高吸收率,这在隐身技术、太赫兹成像、通信系统等领域有重要的应用价值。 CST(Computer Simulation Technology)是一种强大的电磁场仿真软件,广泛应用于电子设备的模拟与分析。利用CST进行太赫兹超材料吸收器的仿真教学,可以有效地帮助学习者理解超材料的物理机制和设计方法。在仿真教学中,会涉及对不同材料的设置,例如石墨烯、二氧化钒和锑化铟等,这些材料因其独特的电磁特性而被选中。通过CST软件,用户可以构建吸收器模型,进行后处理分析,并最终获得吸收光谱图。 在设计过程中,可以实现带和窄带的太赫兹吸收器设计,甚至设计出能在较和较窄频率范围内都具备高效吸收性能的吸收器。这些设计对于实现更精确的太赫兹波段电磁波控制具有重要意义。在教学中,将会详细讲解如何通过改变材料参数、结构尺寸以及层叠顺序等方式来优化吸收器的性能。 超材料吸收器设计的关键步骤包括建模、仿真计算和结果分析。建模过程中需要精确设置材料参数和几何结构,以确保仿真结果的可靠性。仿真计算则依赖于电磁场仿真软件,如CST,它可以计算出材料对电磁波的响应特性。结果分析阶段主要是通过后处理工具来解析仿真数据,获得吸收光谱图等关键信息,进而评估吸收器的设计性能。 文档名称列表中提到的“文章标题可调谐太赫兹超材料吸收器的仿真教学”可能是对整个教学内容的一个概述,而“基于仿真的太赫兹超材料吸收器设计教学一引言在”可能是指某个具体教学模块的引言。其他的文件名则表明教学内容涵盖了从理论到实践的各个方面,包括对吸收器设计的具体步骤和方法的介绍。 此外,教学内容还涉及了对太赫兹超材料吸收器设计的详细讲解,从建模到光谱设计,使得学习者能够全面掌握从理论到实践的整个设计过程。教学内容不仅包含理论讲解,还包括实际操作演练,帮助学习者加深理解,并能够独立进行太赫兹超材料吸收器的设计。 图片文件如“2.jpg”、“4.jpg”和“3.jpg”可能是教学过程中使用的辅助图表或模型示意图,有助于直观展示设计要点和仿真结果,使学习者更容易理解和吸收课程内容。通过这些视觉辅助,学习者可以更好地把握太赫兹超材料吸收器的设计与实现过程。
2025-06-16 18:50:08 1.98MB 哈希算法
1
1. 解压后,开始双击字体,点击安装 2. 点击Eclipse中的Window->Preferences->General->右侧找到"Basic"节点-->Text Fonts->Edit...->搜索框中输入:WenQuanYi Micro Hei Mono,字体选择五号 接着再找到下面的Java节点,把Java Editor Text Font这个的字体也改成和上面的一样。 最后点击Apply and Close即可。
2025-06-15 19:36:48 2.04MB Eclipse
1
对接qmt大礼包,配备需要的全部软件:python3.9版本,qmt模拟安装包,pycharm安装包,talib包
2025-05-25 01:06:05 853.5MB python talib
1
Unity照片墙,加载外部资源 具体演示效果:https://www.bilibili.com/video/BV1Pz4y1J7mH/?spm_id_from=333.999.0.0&vd_source=12092b2426a371be7a60755aba2b683f
2025-05-24 14:36:39 571.18MB unity
1
STM32是一款由STMicroelectronics公司推出的基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计。本项目是关于使用STM32进行输入捕获测量脉的实践,通过Proteus仿真工具进行验证。输入捕获是STM32的一个重要功能,它允许我们精确地测量输入信号的上升沿或下降沿到定时器计数器翻转的时间间隔,从而计算出脉冲度。 我们需要了解STM32中的输入捕获工作原理。在STM32的定时器中,有专门的输入捕获通道,当外部信号触发事件(如上升沿或下降沿)时,定时器的寄存器会记录当前的计数值。通过比较两次捕获的计数值差,我们可以得到脉冲度。在STM32的HAL库或LL库中,提供了相应的API函数来配置输入捕获和处理捕获事件。 具体步骤如下: 1. **配置定时器**:选择合适的定时器(如TIM2、TIM3等),并设置为输入捕获模式。需要设置定时器的工作模式(向上计数、向下计数或中心对齐),预分频器值以确定时基,以及输入捕获通道(例如,通道1用于捕获上升沿,通道2用于捕获下降沿)。 2. **配置输入滤波器**:为了去除噪声,可以设置输入滤波器,定义输入信号的边缘检测延迟时间。 3. **设置中断**:注册输入捕获中断回调函数,当捕获事件发生时,该函数会被调用,用于处理脉测量。 4. **启动定时器**:开启定时器,使其开始计数。 5. **处理中断**:在中断服务程序中,读取捕获的计数值,并计算脉。 Proteus是一款强大的电子电路仿真软件,可以模拟硬件电路行为。在本项目中,Proteus被用来搭建STM32与外部脉冲信号源的虚拟电路,进行输入捕获功能的验证。用户可以通过Proteus界面观察STM32捕获到的脉值,验证代码的正确性。 在使用Proteus仿真时,需要注意以下几点: 1. **添加元件**:在Proteus中添加STM32微控制器和外部脉冲信号源(如555定时器或其他脉冲发生器)。 2. **连线**:正确连接STM32的输入捕获引脚与脉冲信号源的输出引脚。 3. **编程**:将STM32的固件(.hex文件)加载到Proteus中,使能仿真。 4. **运行与观察**:启动仿真,通过Proteus的示波器或者自定义的数据显示窗口观察脉测量结果。 通过这个项目,学习者不仅可以掌握STM32输入捕获的配置和使用,还能熟悉Proteus仿真的操作,增强实践动手能力。全套资料中可能包含源码、电路图、原理说明、教程文档等,帮助初学者更好地理解和应用这些知识点。在实际工程中,这种技术常用于电机控制、传感器信号处理、通信协议解析等领域。
2025-05-23 22:09:50 8.64MB
1
提出了一种基于 Farrow 结构的恒定束时域波束形成器,主要包括实现整数倍采样间隔延迟的数字延时单元、基于 Farrow 结构的高精度分数延时单元以及保证恒定束的幅度加权单元;理论分析了该波束形成器的原理,特点和优势;利用计算机仿真验证了该波束形成器的有效性和优越性;在C6748 DSP平台上的移植实现展示了该恒定束波束形成器的实现效率及实用性。
2025-05-23 18:02:22 1.29MB
1
光谱分色滤光片对成像光谱技术至关重要,是实现光电仪器体积小、质量轻的一个重要器件。根据金属膜具有高反射率的特点和可以进行诱增透的原理,介绍了透0.45μm~1.6μm反8μm~12μm光谱分色滤光片的膜料选择和膜系设计,并应用JGP560A2型磁控溅射镀膜机制备出了光谱性能和理化性能较好的光谱分色滤光片,其光谱性能达到0.45μm~1.6μm波段范围内,平均透过率大于80%;8μm~12μm波段范围内,平均反射率大于91%。
2025-05-23 08:17:07 823KB 工程技术 论文
1
基于VSG技术的双机并联虚拟同步发电机系统研究与应用:采用Plecs平台进行电压电流双闭环控制与SVPWM空间矢量脉调制,模拟微电网多台逆变器并联工况,实现双机无功功率均分和有功功率按比例分配。基本工况及负载变化下的性能分析与验证。,VSG 同步发电机双机并联 Plecs 采用电压电流双闭环控制 svpwm 空间矢量脉调制 模拟微电网多台逆变器并联工况 基本工况: 本地负荷 240kw 10kvar 2-4s 投入 60kw 负荷 负载电压 311V 可实现双机无功功率均分, 有功功率按比例分配 可提供参考文献与简单 谢谢理解 部分波形如下: ,VSG; 虚拟同步发电机双机并联; Plecs仿真; 电压电流双闭环控制; svpwm; 空间矢量脉调制; 微电网逆变器并联; 基本工况; 负荷分配; 功率分配; 参考文献。,"VSG双机并联模拟微电网的功率分配与控制策略研究"
2025-05-12 13:53:17 1.04MB 数据结构
1
LM5117是一款高效、输入电压范围的同步降压(BUCK)转换器,由德州仪器(Texas Instruments)制造,特别适用于电力电子设计领域。这款芯片在2016年的电子设计竞赛中被广泛使用,证明了其在高压电源转换应用中的可靠性和效率。在"16年电赛用的LM5117压同步BUCK电源芯片到货,附测试过的12V/7A降压双层板原理图及PCB文件-LM5117官方演示版.zip"这个压缩包中,包含了一个官方演示版的设计资料,帮助用户理解和应用LM5117。 LM5117的主要特点在于其输入电压范围,通常可以支持从4.5V到60V的输入电压,这使得它能够处理从汽车电池到工业电源的各种应用场景。同时,该芯片能提供高达7A的连续输出电流,这意味着它可以为大功率负载供电,例如驱动电机或高亮度LED灯。 LM5117采用了同步降压架构,这是一种先进的电源转换技术,通过两个开关MOSFET来减少传统降压转换器中的二极管损耗,从而提高整体转换效率。这种同步工作模式可以降低温升,提高系统运行的稳定性和可靠性。 在12V/7A降压双层板原理图中,我们可以看到如何将LM5117与外围电路配合使用,以实现从高电压到12V的转换,并且提供7A的稳定电流。这些电路通常包括输入和输出电容、反馈电阻网络、MOSFET以及必要的保护电路,如热关断和电流限制。 PCB文件则提供了实际布局的指导,这对于确保电源模块的热管理和电磁兼容性至关重要。双层板设计有助于优化信号路径,减少干扰,同时有效地分散热量,确保芯片在高功率运行时仍能保持良好的性能。 LM5117还具有多种保护功能,如逐周期电流限制和短路保护,可以防止过载情况对电路造成损害。此外,它的软启动特性可以平滑地控制上电过程,避免电压冲击和电流峰值。 这个压缩包提供的资料对于学习和使用LM5117芯片进行电源设计非常有帮助。通过分析原理图和PCB布局,工程师们可以深入理解如何设计一个高效、稳定的压电源系统,满足各种电子设备的需求。对于参与电子设计竞赛的团队或者独立开发者来说,这是一个宝贵的资源。
2025-04-25 22:30:42 561KB 电子设计
1