自监督学习(Self-supervised learning)最近获得了很多关注,因为其可以避免对数据集进行大量的标签标注。它可以把自己定义的伪标签当作训练的信号,然后把学习到的表示(representation)用作下游任务里。最近,对比学习被当作自监督学习中一个非常重要的一部分,被广泛运用在计算机视觉、自然语言处理等领域。它的目标是:将一个样本的不同的、增强过的新样本们在嵌入空间中尽可能地近,然后让不同的样本之间尽可能地远。这篇论文提供了一个非常详尽的对比自监督学习综述。
2022-01-23 22:33:07 5.72MB 对比学习
1
SPIN和SMV工具的对比学习 ——基于农夫过河问题-附件资源
2021-11-29 12:11:31 106B
1
SupContrast:监督式对比学习 此库使用CIFAR作为说明性示例,涵盖了PyTorch中以下论文的参考实现: (1)监督式对比学习。(2)视觉表示对比学习的简单框架。 损失函数 损耗函数在losses.py花费features (L2归一化)和labels作为输入,并返回损耗。如果labels为None或未传递给它,则它会退化为SimCLR。 用法: from losses import SupConLoss # define loss with a temperature `temp` criterion = SupConLoss ( temperature = temp ) # features: [bsz, n_views, f_dim] # `n_views` is the number of crops from each image # better be L2 no
2021-11-27 17:25:10 1.44MB Python
1
真棒图对比学习 与图对比学习相关的资源集合。 内容 文件 2019年 | 编码: , tf_geometric 方法( DGI ):局部-全局互信息最大化 实验: 任务:传导性节点分类| 数据集: Cora,Citeseer,Pubmed。 | 基准:原始特征,标签传播,DeepWalk,DeepWalk +特征,GCN,Planetoid。 任务:归纳节点分类| 数据集: Reddit,PPI。 | 基线:原始功能; DeepWalk; DeepWalk +功能; GraphSAGE-GCN; GraphSAGE-mean; GraphSAGE-LSTM; GraphSAGE-pool; FastGCN; 平均集中。 2020年 InfoGraph:通过互信息最大化实现无监督和半监督的图级表示学习孙凡云,Jordan Hoffmann,Vikas Verma,Jian Ta
2021-10-17 17:29:25 15KB
1
SupContrast:有监督的对比学习本文档以CIFAR为例说明了PyTorch中以下论文的参考实现:(1)有监督的对比学习。 论文(2)一个简单的Fr SupContrast:有监督的对比学习本文档以CIFAR为例说明了PyTorch中以下论文的参考实现:(1)有监督的对比学习。 论文(2)视觉表示对比学习的简单框架。 纸张损失功能loss.py中的损失函数SupConLoss以要素(L2标准化)和标签为输入,并返回损失。 如果标签为None或未传递给它,则它会退化为SimCLR。 用法
2021-10-10 09:42:30 1.44MB Python Deep Learning
1
PyContrast 此repo列出了最新的对比学习论文,并包括其中许多代码。 论文清单 找到很棒的对比学习。 PyTorch代码 有关SoTA方法的参考实现(例如InstDis,CMC,MoCo等),请参见 。 预训练模型 提供了一组ImageNet无监督的预训练模型。在找到它们。 物体检测 在PASCAL VOC和COCO上,无监督的预训练模型优于监督的预训练模型。查找。
2021-09-25 11:03:24 154KB Python
1
像素级对比学习 在Pytorch的论文提出了像素级对比学习的实现。 除了在像素级别进行对比学习之外,在线网络还将像素级别表示形式传递给像素传播模块,并向目标网络施加相似度损失。 他们在细分任务中击败了所有以前的非监督和监督方法。 安装 $ pip install pixel-level-contrastive-learning 用法 下面是一个示例,说明了如何使用该框架进行Resnet的自我监督训练,并获取第4层(8 x 8个“像素”)的输出。 import torch from pixel_level_contrastive_learning import PixelCL from torchvision import models from tqdm import tqdm resnet = models . resnet50 ( pretrained = True ) learn
1
近期,所有paper list 放出,本文发现对比学习(Contrastive Learning)相关的投稿paper很多,这块研究方向这几年受到了学术界的广泛关注,并且在CV、NLP等领域也应用颇多。
2021-09-13 14:21:49 16.78MB AAAI_2021 对比学习
1
在NeuraIPS上对比学习(Contrastive Learning)相关的投稿paper很多,这块研究方向这几年受到了学术界的广泛关注,并且在CV、NLP等领域也应用颇多。本文为大家奉上NeurIPS 2020必读的七篇对比学习相关论文——对抗自监督对比学习、局部对比学习、难样本对比学习、多标签对比预测编码、自步对比学习、有监督对比学习
2021-09-13 14:19:55 10.11MB NeuraIPS2020
1
与往年相比,ICML 2020的接收率正逐年走低。本文发现基于对比学习(Contrastive Learning)相关的paper也不少,对比学习、自监督学习等等都是今年比较火的topic,受到了很多人的关注。
2021-09-13 14:18:06 11.39MB ICML_2020 对比学习
1