基于改进麻雀搜索算法的MPPT追踪控制:全局优化与局部寻优的双重策略研究,利用麻雀搜索算法的优化方法与实现:改进的MPPT追踪控制技术,利用改进的麻雀搜索算法实现部分遮光光伏MPPT追踪控制,在原有的SSA算法公式中,为了避免算法后期导致MPPT的较大幅度振荡,在发现者公式中加入线性递减因子。 为了使算法不至于收敛太快以至于追踪不到全局最优解,修改加入者位置更新公式,加入随机数矩阵使得位置更新过程更加随机化,同时为了使算法后期进行局部寻优,在加入者位置更新公式中同样加入了线性递减因子,以减小算法后期的位置变化范围,提高算法的搜索精度。 提供操作视频,参考文献和仿真模型,matlab2018b以上版本可以打开 ,核心关键词:麻雀搜索算法; MPPT追踪控制; 线性递减因子; 位置更新公式; 随机数矩阵; 操作视频; 参考文献; 仿真模型; Matlab2018b以上版本。,基于改进麻雀搜索算法的光伏MPPT追踪控制研究:引入线性递减因子与随机数矩阵优化
2025-05-21 16:51:40 529KB
1
传统A*算法与创新版对比:融合DWA规避障碍物的仿真研究及全局与局部路径规划,1.传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 算法经过创新改进,两套代码就是一篇lunwen完整的实验逻辑,可以拿来直接使用 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 可根据自己的想法任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 绝对的高质量。 ,关键词:A*算法; 改进A*算法; 算法性能对比; 融合DWA; 局部路径规划; 全局路径规划; 障碍物规避; 地图设置; 仿真结果; 姿态位角变化曲线。,"改进A*算法与DWA融合:全局路径规划与动态障碍物规避仿真研究"
2025-05-09 00:18:58 898KB
1
内容概要:本文档主要介绍了局部特征增强模块(LFE)的设计与实现,以及将其应用于ShuffleNet V2神经网络模型的方法。LFE模块包括通道注意力机制和空间注意力机制,通过这两个机制计算出的注意力图来增强输入特征图。具体来说,通道注意力机制通过全局平均池化、两个卷积层和Sigmoid激活函数来生成通道权重;空间注意力机制则通过一个卷积层和Sigmoid激活函数生成空间权重。接着定义了`add_lfe_to_stage`函数,用于将LFE模块插入到指定阶段的每个子模块之后。最后,`create_model`函数创建了一个带有LFE模块的ShuffleNet V2模型,并修改了最后一层全连接层的输出类别数。; 适合人群:对深度学习有一定了解,特别是熟悉PyTorch框架和卷积神经网络的开发者或研究人员。; 使用场景及目标:①理解注意力机制在卷积神经网络中的应用;②掌握如何自定义并集成新的模块到现有网络架构中;③学习如何调整预训练模型以适应特定任务需求。; 阅读建议:读者应具备基本的Python编程能力和PyTorch使用经验,在阅读时可以尝试运行代码片段,结合官方文档深入理解各个组件的作用和参数设置。
1
# 基于ROS和g2o框架的TEB局部路径规划器 ## 项目简介 本项目是一个基于ROS(机器人操作系统)和g2o优化框架的局部路径规划器,名为TEB(Timed Elastic Band)局部路径规划器。该项目主要用于移动机器人的导航任务,通过优化机器人的轨迹来实现高效、安全的局部路径规划。 ## 项目的主要特性和功能 1. 路径规划优化使用g2o框架进行轨迹优化,支持多种约束条件,包括障碍物避碰、速度限制、加速度限制、路径最短、机器人运动学模型等。 2. 动态障碍物处理能够处理动态障碍物的移动,并实时更新路径规划。 3. 可视化支持提供丰富的可视化功能,包括路径、障碍物、机器人模型等的可视化。 4. 多轨迹管理支持多轨迹的管理和优化,选择最佳轨迹进行执行。 5. 速度和姿态控制提供精确的速度和姿态控制,确保机器人按照规划的路径平稳移动。 6. 路径规划图构建通过图搜索算法构建路径规划图,支持深度优先搜索和概率路线图方法。 ## 安装使用步骤
2025-04-19 14:53:41 392KB
1
GAN局部语义编辑的方法及应用 GAN(Generative Adversarial Networks)是一种深度学习模型,近年来在图像合成领域取得了非常大的进步。然而,对GAN输出的控制能力仍然有限。为解决这个问题,我们提出了一种简单而有效的方法,可以对目标输出图像进行局部的、语义感知的编辑。这是通过从源图像(也是GAN输出)中借用元素,通过对样式向量的新颖操作实现的。 我们的方法基于StyleGAN模型,它可以生成高质量的图像。我们观察到,StyleGAN在训练过程中学习了语义对象的紧凑表示,因此可以将参考图像的特定对象部分的外观转移到目标图像上。我们的方法不需要外部模型的监督,也不涉及复杂的空间变形操作。 我们的贡献包括: * 我们揭示了StyleGAN生成器中隐藏激活的结构,表明学习到的表示在合成图像中与语义对象大体上是解缠结的。 * 我们利用这种结构开发了一种新颖的图像编辑器,可以将语义部分从参考图像转移到目标合成图像。 我们的方法有很多应用,例如法医艺术,可以将人脸由各种来源合成;室内设计,可以可视化各种设计元素的组合。通过将我们的方法与将自然图像嵌入到StyleGAN的潜在空间中的最新工作相结合,可以设想将其扩展到对真实图像的语义编辑。 在我们的方法中,我们使用StyleGAN模型来生成图像,然后将参考图像的特定对象部分的外观转移到目标图像上。我们通过对样式向量的新颖操作实现了这个过程。 我们的方法的优点包括: * 简单而有效:我们的方法不需要外部模型的监督,也不涉及复杂的空间变形操作。 * 局部语义编辑:我们的方法可以对目标输出图像进行局部的、语义感知的编辑。 * 广泛的应用:我们的方法可以应用于法医艺术、室内设计等领域。 我们的方法的局限性包括: * 依赖于StyleGAN模型:我们的方法基于StyleGAN模型,如果StyleGAN模型不能生成高质量的图像,那么我们的方法也不会很好地工作。 * 只能编辑局部对象:我们的方法只能编辑局部对象,不能编辑整个图像。 我们认为我们的方法可以广泛应用于图像编辑领域,并且可以与其他方法结合使用以实现更多的图像编辑功能。 在未来的工作中,我们计划将我们的方法扩展到对真实图像的语义编辑,并且与其他方法结合使用以实现更多的图像编辑功能。 我们的方法是一种简单而有效的方法,可以对目标输出图像进行局部的、语义感知的编辑。我们的方法基于StyleGAN模型,可以广泛应用于法医艺术、室内设计等领域,并且可以与其他方法结合使用以实现更多的图像编辑功能。
2025-04-16 17:31:11 27.58MB 局部语义
1
,,三菱MR-JE-C伺服电机FB功能块(适用Q系列PLC) 流水线项目,16个MR-JE-C电机,为了加快编程速度,特意做的一个FB功能块,内部采用局部变量+全局缓冲区的方式进行编程,多次调用不冲突! 适用于Q系列PLC和MR-JE-C的运动控制。 FB功能块包含回原位、PV速度模式、PP定位模式、正负限位、报警等功能。 通过设置功能块的站点号分别对网络中的MR-JE-C进行控制! ,关键词:三菱MR-JE-C伺服电机;FB功能块;Q系列PLC;回原位;PV速度模式;PP定位模式;正负限位;报警控制。,Q系列PLC优化的MR-JE-C伺服电机FB功能块:快速编程,多机控制
2025-04-05 09:37:31 5.41MB istio
1
基于Matlab的局部路径规划算法研究:结合阿克曼转向系统与DWA算法的车辆轨迹优化与展示,动态、静态障碍物局部路径规划(matlab) 自动驾驶 阿克曼转向系统 考虑车辆的运动学、几何学约束 DWA算法一般用于局部路径规划,该算法在速度空间内采样线速度和角速度,并根据车辆的运动学模型预测其下一时间间隔的轨迹。 对待评价轨迹进行评分,从而获得更加安全、平滑的最优局部路径。 本代码可实时展示DWA算法规划过程中车辆备选轨迹的曲线、运动轨迹等,具有较好的可学性,移植性。 代码清楚简洁,方便更改使用 可在此基础上进行算法的优化。 ,动态障碍物; 静态障碍物; 局部路径规划; MATLAB; 自动驾驶; 阿克曼转向系统; 车辆运动学约束; 几何学约束; DWA算法; 轨迹评分; 实时展示; 代码简洁。,基于DWA算法的自动驾驶局部路径规划与车辆运动学约束处理(Matlab实现)
2025-03-31 22:32:23 132KB 哈希算法
1
在图像平滑处理过程中,如何设计保持图像边缘和纹理细节的数字图像去噪滤波器一直是人们关注的热点问题。本文在统一描述数字全变差滤波算法(DTV)和数字双边全变差算法(DBTV)的滤波机制的基础上,利用图像像素间的近-远程相关性,分别定义近程相关性和远程相关性两个度量,建立了一种非局部图像滤波自适应双边加权机制,提出一种同时适合高斯噪声和脉冲噪声的非局部数字全变差滤波算法(NLTV)。实验验证了新算法在抑制噪声的同时具有较好的边缘细节和纹理保持性能。
2024-11-20 14:43:18 2.86MB
1
对Buades等人提出的非局部均值图像去噪算法进行改进。传统的方法在滤波参数定义上存在缺陷,为了解决这个问题,通过建立噪声方差与滤波系数的关系,提出解决噪声估计的方法。另外,根据小波系数的分布特点,利用GGD模型参数(尺度和形状参数)对系数进行拟合,并用GGD模型参数提出一种有效的噪声方差估计算法。实验结果表明,该噪声方差估计算法不仅能有效地估计噪声方差大小,而且使原有的非局部均值算法具有自适应性。这种自适应的非局部均值算法可以达到近似最优,具有鲁棒性和快速性,且算法精度高。
2024-09-05 10:57:57 825KB
1
在ANSYS软件中进行局部网格细化是解决复杂问题的关键步骤,尤其当模型的某些区域需要更高精度时。本文将深入探讨在ANSYS中如何实现这一功能,帮助你优化计算资源,提升模拟精度。 理解网格细化的目的至关重要。网格细化(Mesh Refinement)是为了在模型的敏感或关键区域提高计算精度,比如边界层、应力集中点或者流场过渡区域。通过增加这些区域的网格密度,可以更精确地捕捉物理现象的变化。 在ANSYS中,局部细化通常涉及以下步骤: 1. **模型准备**:创建或导入你的几何模型。确保模型无误,边界条件设置正确,这是所有模拟的基础。 2. **全局网格划分**:在全局划分网格阶段,你可以选择不同的网格类型,如结构网格、流体网格等,以及相应的划分策略。全局网格划分通常用于模型的大范围部分,保持相对较低的网格密度。 3. **选择细化区域**:确定需要细化的区域。这可能是基于物理问题的理解,例如靠近自由表面的边界层,或者结构中的应力集中点。 4. **定义细化层次**:在ANSYS中,你可以定义多个细化层次。每个层次对应不同的网格尺寸,层次越高,网格越细。通常,细化层次从粗到细进行设置。 5. **应用网格细化工具**:使用ANSYS的“Refine”命令来指定细化区域。可以使用边界条件、几何特征或者用户自定义的表达式来定义这些区域。例如,你可以通过距离边界一定厚度的区域内进行细化,或者根据应力结果自动细化。 6. **控制细化参数**:在细化过程中,你可以设置细化因子,它决定了相邻层次之间的网格大小比例。细化因子越大,网格尺寸变化越平滑,但可能导致过渡区的网格过多;反之,细化因子小可能造成过渡不平滑。 7. **检查和调整**:在划分网格后,务必检查网格质量。高质量的网格对于准确的求解至关重要。如果发现局部网格质量不佳,可能需要重新调整细化区域或细化因子。 8. **执行网格生成**:运行网格生成命令,ANSYS将根据设定的规则生成网格。记得在生成后再次检查网格,确保细化区域的网格满足预期。 9. **运行求解**:完成网格划分后,就可以进行求解过程了。局部细化的网格将帮助你在关键区域获得更精确的解决方案。 通过以上步骤,你可以在ANSYS中有效地实现局部网格细化,提高计算精度,同时避免全局细化带来的计算资源浪费。在实际操作中,应根据具体问题和计算资源灵活调整细化策略,找到最佳的平衡点。
2024-08-09 18:18:18 7KB ansys 局部细化
1