USB 2.0电气特性是USB 2.0规范的核心组成部分,主要涉及设备与集线器之间的高速数据传输。在理解这些特性时,首先要明确USB 2.0规范对高速模式的支持要求。根据规范,USB 2.0的集线器必须支持高速模式,但设备并不强制要求支持高速模式。高速能力建立在上游接口的收发器不支持低速信号模式,而下游接口的收发器则需同时支持高速、全速和低速模式。 在USB电气特性中,信号传输是非常关键的一环。高速USB连接通过屏蔽双绞线电缆进行,这种电缆需符合所有当前的USB电缆规格。高速操作能够支持480 Mb/s的数据传输速率。为了实现这一高速传输,电缆的两端都需要用一个电阻从每根线到地进行终止。这个电阻值(每根线上)理论上设定为电缆规定差分阻抗的一半,即45 Ω,这将形成一个90 Ω的差分终止。这样做的目的是确保信号在传输过程中能够保持稳定,减少干扰和信号损失。 在高速模式下,链接处于高-speed idle状态时,电缆两端的收发器都向地呈现高速终止,同时两个收发器都不向D+或D-线路驱动信号电流。达到这种状态的方法是利用低速/全速驱动器来设置单端零状态,并精确控制内在驱动器输出阻抗与Rs电阻(理想值为45 Ω)的总和。推荐的做法是尽可能降低内在驱动器阻抗,让Rs承担尽可能多的45 Ω负载,这通常会导致最佳的终止精度,同时减少寄生负载的影响。 在高速模式下,高-speed idle状态下,信号线D+和D-不携带任何驱动电流,只有收发器的终止电阻向地提供电流。为了保持信号的完整性,必须严格控制收发器的输出阻抗和Rs电阻的匹配,以确保信号的准确传输。此外,良好的接地和屏蔽也是确保高速信号无误传输的关键因素。 USB 2.0电气特性涉及到高速传输的物理层设计,包括电缆规格、信号速率、阻抗匹配、信号终止和驱动器特性等方面。理解这些特性对于设计和维护USB 2.0系统至关重要,因为它们直接影响到数据传输的可靠性、速度和稳定性。在实际应用中,工程师需要根据规范要求和具体环境来优化这些参数,以实现高效且可靠的USB通信。
2025-12-29 17:03:29 893KB USB2.0 电气特性 electrical
1
第十六届蓝桥杯单片机国一经验总结(含第11-15届省赛/国赛代码)
2025-12-18 22:35:43 4.14MB 蓝桥杯 代码开源
1
山东大学软件学院数据挖掘期末总结 数据挖掘是指从大量数据中提取有价值的信息的过程。数据挖掘的基本步骤包括:明确目的和思路、数据收集、数据处理、数据分析、数据展现和报告撰写。其中,数据处理是一个非常重要的步骤,它包括数据清理、数据集成、数据变化和数据归约等任务。 大数据的 4V 理论是指数据的四个主要特征:数据量大(volume)、数据类型繁多(variety)、处理速度快(velocity)和价值密度低(value)。 数据分析中有多种度量尺度,常见的有定类尺度、定序尺度、定距尺度和定比尺度,每种尺度都有其对应的集中趋势和离散度量方法。 在数据挖掘中,数据对象的相似性是一个非常重要的概念,常见的相似性度量方法有余弦相似度、Jaccard 相似系数和闵可夫斯基距离等。 数据属性的相关性也是一种非常重要的概念,常见的相关性度量方法有斯皮尔曼等级相关系数、皮尔森相关系数等。 数据预处理是数据挖掘的准备阶段,主要任务包括数据清理、数据集成、数据变化和数据归约等。数据清理主要解决的问题是填写空缺的值、识别离群点和平滑噪声数据等。 脏数据是指数据中存在错误、不一致或缺失的数据,常见的脏数据类型包括不完全、噪音和不一致等。脏数据的主要原因是数据收集时未包含、数据收集和数据分析时的不同考虑、人/硬件/软件问题等。 缺失值的处理方法有多种,包括忽略元组、手工填写、数值型数据使用中位数、平均数、众数等填充等。 噪音数据是指在测量一个变量时可能出现的测量值相对于真实值的偏差或者错误。噪音数据的产生原因包括错误的数据收集工具、数据录入问题、数据传输问题、技术限制、不一致的命名惯例等。 噪音数据的检测和处理方法也有多种,包括简单统计分析、使用距离检测多元离群点、基于模型检测和基于密度检测等。处理方法包括分箱、回归和聚类等。 数据挖掘是一个复杂的过程,需要对数据进行多方面的分析和处理,以提取有价值的信息。
2025-12-16 17:26:02 3.17MB 数据挖掘
1
在这份软件测试工程师顶岗实习总结报告中,首先介绍了实习单位的背景信息,指明其是一家高科技企业,专注于数据通信、视频监控系统、软件开发等多个领域。接着,报告详细阐述了实习期间的工作职责,包括编写测试计划和测试用例、寻找和跟踪Bug、布署测试环境、撰写测试报告、熟悉Linux系统与Oracle数据库以及运用性能测试工具LoadRunner和文档管理工具SVN。 报告中还回顾了实习的具体内容,强调了测试用例设计的逻辑性与全面性,以及在实习过程中如何执行测试用例和发现、追踪Bug。特别提到了在新版本发布后,需要重新执行测试用例以确认新发现的Bug是否得到修正,并确保软件功能达到预期标准。 实习生在工作中展现了积极的学习态度,从最初对Linux系统和Oracle数据库的陌生到最终能熟练操作,体现了快速学习与成长的过程。同时,报告还谈到了在面对新知识时的挑战,以及如何通过请教老员工和自学来克服困难。 报告总结了实习生的工作措施,强调了理论与实践相结合的重要性,并指出了在实习期间发现的自身局限性。报告建议新入行者应增强责任感、使命感和吃苦耐劳的精神,并不断扩展自己的知识面。 在结束语部分,实习生表达了对指导老师和企业师傅的感激之情,并对自己的未来学习和工作提出了更高要求。报告最后向刚毕业的学子们送上了祝福。 这份实习报告不仅概述了软件测试工程师的实习工作内容,还深刻地反映了实习生在实习过程中的个人成长、工作态度和责任意识。报告对于即将步入职场的学生有着很好的借鉴和启示作用,同时为相关教育机构和企业提供了实习生培训和管理的参考。
2025-12-15 11:56:01 15KB
1
包含车辆数量 公路等级 道路类型 限速 交叉口 照明情况 天气情况 路面情况 伤亡数量 事故严重程度
2025-12-03 16:33:28 55KB 数据集 matlab python
1
NULL 博文链接:https://hyjiang1989.iteye.com/blog/1814600
2025-11-28 14:47:58 1.42MB 源码
1
本文详细介绍了TZC400的系统架构、硬件框图、FPIDs和NSAIDs、region setup以及NSAID的相关知识。TZC400作为core和DDR之间的memory Filter,通过ACE-Lite接口对Master访问DDR进行filter控制。文章解释了TZC400的硬件结构,包括control unit和filter unit,以及最多支持的9个region和4个filter的关系。此外,还探讨了FPIDs和NSAIDs的作用,region的配置规则,以及NSAID在Non-Secure访问中的来源和使用方式。最后,文章提出了关于cache中数据安全性的思考,并提供了相关的系统架构图和硬件框图以帮助理解。 TZC400是core和DDR之间的一层memory Filter,它使用ACE-Lite接口对Master访问DDR进行filter控制,起到安全边界的作用。TZC400的系统架构包括硬件结构和软件配置两大部分。在硬件结构方面,TZC400主要包括control unit和filter unit,control unit用于控制整个TZC400的工作,而filter unit则根据region setup来进行具体的filter控制。在软件配置方面,TZC400支持最多9个region和4个filter,每个region都可以配置不同的filter规则。 FPIDs(Filtering Parameter Identifiers)和NSAIDs(Non-Secure Access Identifiers)是TZC400中非常重要的概念。FPIDs用于定义filter的参数,如权限、地址等,而NSAIDs则用于标识Non-Secure访问的来源。通过FPIDs和NSAIDs的配置,TZC400可以实现对DDR访问的精细控制。 region的配置规则是TZC400的关键知识之一。每个region都可以配置自己的FPIDs和NSAIDs,从而实现对DDR访问的精细控制。region的配置规则需要根据具体的应用场景来定制,以满足不同的安全需求。 NSAIDs在Non-Secure访问中的来源和使用方式也是TZC400的重要知识。NSAIDs可以标识Non-Secure访问的来源,从而实现对Non-Secure访问的控制。在TZC400中,NSAIDs的使用需要根据具体的硬件和软件配置来定制。 关于cache中数据安全性的问题,TZC400也提供了相应的解决方案。通过合理的配置,TZC400可以确保cache中数据的安全性,防止未授权访问。 文章还提供了一些系统架构图和硬件框图,以帮助读者更好地理解和掌握TZC400的相关知识。 TZC400的学习和应用涉及到硬件和软件的双重配置,需要对TZC400的系统架构、硬件结构、FPIDs和NSAIDs、region配置规则以及cache数据安全性等方面有深入的理解。通过对TZC400的学习,开发者可以更好地理解如何使用TZC400来实现对DDR访问的安全控制,从而提高系统的安全性。
2025-11-28 09:58:32 6KB 软件开发 源码
1
山东大学软件学院22级编译原理历年题总结
2025-11-27 21:23:29 7.17MB 山东大学软件学院
1
AEC-Q100(Automotive Electronics Council-Q100)是汽车电子委员会发布的一套测试标准,旨在对汽车电子芯片进行可靠性和性能评估。它包括一个主标准和12个子标准(从001到012),共分为13个测试序列。这些测试序列涵盖了多个维度,以确保芯片在汽车环境下的可靠性和稳定性。 AEC-Q100标准是汽车电子领域中至关重要的一个部分,它规定了汽车用集成电路(ICs)的可靠性测试流程和标准。该标准由汽车电子委员会制定,目的是确保汽车用电子芯片能够经受得起恶劣的工作环境考验,提供稳定可靠的性能。AEC-Q100涵盖了广泛的测试项目,这些测试项目围绕失效机制进行设计,旨在模拟汽车使用环境下可能出现的各种情况。 AEC-Q100测试标准总共包括13个测试序列,这些序列可以分为12个子标准(编号从001到012)。每个子标准都对应于特定的测试项目,它们对芯片在不同方面的性能和稳定性进行评估,如高温、高温循环、机械冲击、温度循环、湿度、腐蚀、机械振动等。通过这些严苛的测试,能够确保芯片在各种极端条件下仍然能够可靠工作。 AEC-Q100标准中所包含的测试项目不仅对芯片的物理特性进行考验,还包括了电气特性的检验。这样的综合测试方法确保了芯片在汽车电子产品中的稳定性和安全性。标准中还定义了零件的运作温度等级,以及能力指标Cpk等重要参数,从而保证了芯片能够在预定的温度范围和性能指标内安全运行。 AEC-Q100标准的应用确保了汽车电子芯片具有足够的可靠性,它为汽车制造商、供应商以及集成电路设计公司提供了一个共同的参考标准,保证了汽车电子系统的质量和性能。随着汽车行业的不断进步,AEC-Q100也在持续更新和改进,以适应新的技术和市场要求。例如,最新的AEC-Q100 Rev-J版本,它引入了更新的技术要求和测试程序,以确保汽车芯片测试能够跟上不断发展的汽车电子技术的步伐。 AEC-Q100标准通过一系列严格的测试流程,保证了汽车用集成电路的高可靠性和长寿命。这不仅提高了汽车的性能和安全性,还对汽车行业的持续发展做出了重要贡献。所有与汽车电子相关的制造商、设计师和工程师都需要严格遵守AEC-Q100标准,以确保其产品能够在激烈的市场竞争中脱颖而出。
1
PCB相关标准要点总结。包括GJB和SJ: GJB3243A-2021《电子元器件表面安装要求》 GJB4057A-2021《军用电子设备印制板电路设计要求》 GJB 362C-2021《刚性印制板通用规范》 GJB 7548A-2021《挠性印制板通用规范》 GJB 10115-2021《微波印制板设计规范》 GJB 2142A-2011《印制线路板用覆金属箔层压板通用规范》 SJ 20810A-2016《印制板尺寸与公差》 SJ 21481-2018《高速电路导线特性阻抗控制要求》 SJ 21554-2020《印制板背钻加工工艺控制要求》 SJ 21305-2018《 电子装备印制板组装件可制造性分析要求》 SJ 21150-2016 《微波组件印制电路板设计指南》
2025-11-25 15:24:41 2.47MB 信号完整性 硬件研发
1