数据集是COAE2015评测中的任务:关于中文情感倾向型分析, 适合用于训练情感分析的模型。比如针对博文:哇塞,这里有好多绝版的照片,简直太赞了! 带有标签信息 positive
2022-05-14 11:19:57 1.97MB 情感倾向性分析  情绪分析 语料
1
从面部表情实时情感分析 从面部表情实时进行人类情绪分析。 它使用了深度的卷积神经网络。 使用的模型在测试数据上的准确性达到63%。 实时分析器为当前情绪分配合适的表情符号。 模型实现是在keras中完成的。 一些预测的输出: 使用的表情符号: 实时情绪分析器快照 从图中可以明显看出,给定帧的模型预测是中性的。 模型架构 文件清单 facial Emotions.ipynb :Jupyter笔记本,具有记录完整的代码,从开始到培训都说明模型准备。 可用于重新训练模型。 main.py :主python webcam_utils :用于从面部实时检测情绪的代码prediction_utils :
1
Twitter情绪分析 这是一种自然语言处理问题,其中通过使用机器学习模型对消极消息中的消极消息进行归类来进行情感分析,以进行分类,文本挖掘,文本分析,数据分析和数据可视化 介绍 如今,自然语言处理(NLP)成为数据科学研究的温床,而NLP的最常见应用之一就是情感分析。 从民意测验到制定完整的营销策略,该领域已完全重塑了企业的运作方式,这就是为什么这是每个数据科学家都必须熟悉的领域。 与一组人手动完成相同任务所需的时间相比,可以在几秒钟内处理成千上万个文本文档的情感(以及其他功能,包括命名实体,主题,主题等)。 我们将按照解决一般情感分析问题所需的一系列步骤进行操作。 我们将从预处理和清理
1
Twitter股票交易员(NLP情绪分析) ( , ,( , 。 。 描述 此应用程序将基于用于情感分析的自然语言处理(NLP)算法实现股票的纸面交易。 应该注意的是,由于没有公司的其他情况,对公司使用推特React非常不稳定,并且在日内交易之外几乎没有用例。 该软件是按原样提供的,对于您因使用此程序而导致的任何后果,作者概不负责。 他们不对您因使用此程序尝试赚钱而愚蠢造成的损失负责,而不是对公司的财务记录进行尽职调查。 总览 该应用程序包含三个主要部分: 摄取引擎 接收引擎是应用程序的“前端”,可以持续运行,利用Twitter的从重要的股票金融服务获取最新更新,然后再将信息分批
2022-03-13 09:30:34 202KB nlp twitter sentiment-analysis stock-trading
1
基于Python形成的数据可视化分析,可以从顾客的评论中观察出顾客的产品需求,包含代码。本文主要基于电商平台的顾客评价来实现对于顾客的情感分析,利用文本自动识别系统将顾客的评论变为可视化,从而有助于商业分析和产品的进一步开发。
2022-03-07 19:17:02 8.49MB 可视化 情绪分析
1
亚马逊美食评论 Amazon Fine Food Reviews数据集包含568,454条亚马逊用户截至2012年10月的食品评论。 该分析的目的是建立一个预测模型,在此模型中,我们将能够预测推荐是肯定的还是否定的。 在此分析中,我们将不关注分数,而仅关注建议的积极/消极情绪。 涉及程序 该项目是关于文本数据使用的情感分析 nltk库,其中包括PorterStemmer()和word_tokenize(),可将非结构化文本数据更改为结构化文本 使用countvectorizer(将文本文档的集合转换为令牌计数矩阵),TfidfTransformer(以缩小在给定语料库中频繁出现的令牌的影响,因此,从经验上讲,其信息量少于一小部分的功能)来自sklearn库的训练语料库以进行特征提取 朴素的贝叶斯(MultinomialNB,BernoulliNB) 逻辑回归 使用roc曲线,confc
2022-01-11 17:59:05 101KB JupyterNotebook
1
根据PSD(功率谱密度)和DWT(离散小波变换)两种特征,根据唤醒和效价(高/低)对脑电评分进行情绪识别分类。 运行process.m文件可以获取功率谱密度文本文件。 生成的每个测试文件都包含α、β、δ和θ波功率谱密度比(通过总psd标准化),分别为效价、唤醒和组合输出。运行dwt_feature_extraction.m生成DWT分析波的测试文件。它由3个特征组成:小波能量、小波熵和标准差,以及arousla和valce的评级。文件夹“psd analysis knn and svm”和“dwt analysis”已经包含处理过的文本文件和python代码,用于从这些测试文件中获取训练数据并进行分类。使用KNN和SVM运行ipynb文件进行分类。
2022-01-03 09:13:04 3.49MB matlab 脑电情绪识别 深度学习
IMDB_Sentiment_Analysis 鉴于大量的在线评论数据(Amazon,IMDB等),情绪分析变得越来越重要。 在这个项目中,建立了一个情感分类器,用于评估一段文字的极性是正还是负。 情感分析是在Keras随附的IMDB数据集上完成的。 它由25,000个训练样本(其中20%是验证样本)和25,000个测试样本组成。 数据集中的所有单词均已预先标记。 使用自训练的单词嵌入(Keras嵌入层)。 我训练了不同的模型,其中一个模型包含一个LSTM层。 它在10个时元上的准确度为84%。 第二个示例由两组Conv1D和MaxPooling1D图层组成,后面是标准GRU图层。 观察到85%的准确性。 我已经将CuDNN层用于LSTM和GRU,因为它们在GPU上的速度比标准LSTM和GRU层快得多。 所有实现都是使用Keras进行的。 另一个具有RMS Prop精度的示例为84%,而
2021-12-21 16:05:55 95KB JupyterNotebook
1
Yelp评论情绪分析 利用ScalaSpark对yelp评论执行情感分析的简化程序。评论情绪将根据正面/负面的简单极性进行评分。 项目主要数据: ambari-node5.csc.calpoly.edu:/home/jchoi108/yelp_review_trimmed_v3.txt 演示幻灯片: 集思广益/概述/想法: 报告:
2021-12-20 15:26:00 1.12MB XSLT
1
加密货币每日价格预测 使用机器学习和情感分析来预测加密货币的收益和损失。 请查看Overview.pdf文件以获取更多信息。
2021-12-19 18:48:10 407KB
1