内容概要:本文详细介绍了水下巡检竞赛中使用的水下机器人控制系统。重点讲解了如何利用树莓派控制STM32微控制器,并通过ROS实现无线控制,完成水下机器人的阈值纠偏和中心点纠偏。文中首先概述了水下巡检技术的发展背景及其重要性,接着分别阐述了树莓派控制STM32的具体实现方法,包括硬件连接、软件开发和调试优化;随后介绍了ROS无线控制的实现流程,如ROS环境搭建、节点编写及调试测试。最后总结了此次竞赛的技术成果,强调了该技术在未来水下巡检领域的广泛应用前景。 适合人群:对水下机器人感兴趣的研究人员和技术爱好者,尤其是有一定嵌入式系统和ROS基础的学习者。 使用场景及目标:适用于希望深入了解水下机器人控制系统的个人或团队,旨在帮助他们掌握从硬件组装到软件编程的一系列技能,最终实现高效的水下巡检任务。 其他说明:本文提供了详细的代码实现指南,有助于读者快速上手并应用于实际项目中。同时,文中提及的MVLink协议也是理解和实施水下机器人通信的关键部分。
2025-06-03 18:31:18 300KB
1
内容概要:本文详细介绍了如何使用LabVIEW通过Modbus协议和RS485通讯接口直接控制台达伺服电机的方法,从而避免使用PLC,降低硬件成本。主要内容涵盖初始化串口通讯、构建Modbus指令、发送指令并处理响应的具体步骤,以及硬件接线和伺服参数设置的关键细节。此外,文中还提供了常见问题的解决方案和注意事项,确保用户能够顺利实施这一方案。 适合人群:从事自动化控制领域的工程师和技术人员,特别是希望降低成本并简化系统架构的专业人士。 使用场景及目标:适用于只需要简单运动控制的小型自动化生产线或实验环境,旨在减少硬件投入,提高系统稳定性和效率。通过这种方法,用户可以在不牺牲性能的前提下显著节约成本。 其他说明:尽管该方法适用于大多数简单运动控制任务,但对于需要复杂逻辑控制或多轴协同工作的项目,仍推荐使用PLC或其他专业控制器。同时,在高实时性要求的应用中,应谨慎评估Modbus协议的响应速度。
2025-05-23 22:46:56 3.85MB
1
ChatGPT 技术实现的情感识别与情绪分析方法 ChatGPT 技术是基于大规模预训练语言模型的生成式对话系统,能够实现高效的 情感识别与情绪分析。其核心思想是通过训练大规模语料库,使模型能够根据上下文生成准确、连贯的回答,进而实现对情感和情绪的识别。 在训练模型的过程中,ChatGPT 技术引入了多任务学习的思想,通过同时训练多个相关的任务,进一步提高情感识别与情绪分析的性能。这些任务包括情感分类、情感强度预测等。通过共享模型参数,可以在一个模型中同时学习多个任务,提高模型的泛化能力。 ChatGPT 技术还采用了注意力机制和上下文编码技术,以提高情感识别与情绪分析的准确程度。通过注意力机制,模型能够更加关注与情感和情绪相关的信息,提取重要的上下文特征。而上下文编码技术则可以将生成式回答的上下文信息编码为固定维度的表示,方便后续的情感识别和情绪分析。 在实际应用中,ChatGPT 技术可以广泛应用于社交媒体分析、情感智能交互等方面。其强大的智能问答和对话生成能力,可以帮助用户更好地理解和分析情感和情绪。但是,ChatGPT 技术仍然存在一些挑战和限制,例如生成式模型的解释性较差、对训练数据的依赖性较高等。 ChatGPT 技术为情感识别与情绪分析提供了新的思路和方法,并具有重要的应用前景。但是,需要进一步的研究和改进,以提高模型的泛化能力和解释性。 知识点: 1. ChatGPT 技术是基于大规模预训练语言模型的生成式对话系统。 2. ChatGPT 技术能够实现高效的 情感识别与情绪分析。 3. 多任务学习可以提高情感识别与情绪分析的性能。 4. 注意力机制和上下文编码技术可以提高情感识别与情绪分析的准确程度。 5. ChatGPT 技术可以广泛应用于社交媒体分析、情感智能交互等方面。 6. ChatGPT 技术存在一些挑战和限制,例如生成式模型的解释性较差、对训练数据的依赖性较高等。 ChatGPT 技术为情感识别与情绪分析提供了新的思路和方法,并具有重要的应用前景。但是,需要进一步的研究和改进,以提高模型的泛化能力和解释性。
2025-05-19 21:01:30 38KB
1
内容概要:本文详细介绍了新能源动力总成台架试验室及其电力电子件建设的能力规划。主要内容涵盖动力电池、电机、电驱动总成和其他控制器的测试方法和技术细节。文中不仅讨论了硬件设施的搭建,如电池循环寿命测试系统的构建,还深入探讨了软件层面的关键技术,如用于生成动态应力测试工况的Python脚本、基于PySyft的联邦学习框架以及CANoe设备在控制器测试中的应用。此外,文章强调了数据标注和机器学习模型在试验室中的重要性,指出代码和数据处理能力是现代试验室的核心竞争力。 适合人群:从事新能源汽车研发、测试的技术人员,尤其是对动力总成和电力电子件测试感兴趣的工程师。 使用场景及目标:适用于希望深入了解新能源动力总成测试技术和电力电子件建设的专业人士。目标是掌握从硬件到软件的全面测试流程,提高测试效率和准确性。 其他说明:文章提供了多个具体的代码示例,帮助读者更好地理解和应用相关技术。同时,强调了数据处理和机器学习在现代试验室中的关键作用。
2025-05-13 12:12:31 377KB Python CANoe 联邦学习
1
内容概要:本文深入探讨了一份详细的L4无人车自动驾驶系统方案文档,尽管没有配套代码,但提供了丰富的理论和技术指导。文档主要分为感知层、决策层和执行层三大模块。感知层利用多种传感器(如激光雷达、毫米波雷达)获取环境信息;决策层基于感知数据制定驾驶策略,涵盖从简单行驶到复杂路况的处理;执行层负责将决策转化为具体的车辆操作。文中还讨论了多传感器时间同步、路径规划算法、横向控制算法以及故障恢复机制等关键技术的具体实现方法。此外,强调了系统方案文档对于项目方向的重要性及其局限性。 适合人群:从事自动驾驶技术研发的专业人士,尤其是关注L4级别无人驾驶系统的工程师和研究人员。 使用场景及目标:帮助读者理解L4无人车自动驾驶系统的整体架构和核心技术,为后续的实际编码和系统集成提供理论支持。同时,也为跨学科团队成员之间的沟通搭建桥梁,促进项目的顺利推进。 其他说明:虽然文档未附带代码,但它为理解和实现真正的自动驾驶系统奠定了坚实的基础。文中提供的伪代码和简化的代码示例有助于加深对各个模块的理解。
2025-05-11 08:45:37 2.91MB
1
内容概要:本文详细介绍了如何使用MATLAB和物理信息神经网络(PINN)求解二维泊松方程。首先简述了泊松方程及其重要性,随后深入探讨了PINN的工作原理,即通过将物理方程作为约束加入神经网络训练过程,使网络能够学习到符合物理规律的解。文中提供了完整的MATLAB代码实现,涵盖神经网络结构搭建、训练数据准备、损失函数定义、训练过程及结果可视化等多个环节。此外,还讨论了一些实用技巧,如选择合适的激活函数、调整网络层数、优化训练参数等。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对数值模拟、物理学建模感兴趣的群体。 使用场景及目标:本方法可用于快速求解各种物理问题中的泊松方程,尤其适合于那些难以用传统方法精确求解的情况。通过这种方式,研究者可以获得更加直观的理解,并探索不同条件下解的变化趋势。 其他说明:尽管PINN相比传统方法有诸多优势,但在某些特定情况下(如存在奇异点),仍需谨慎对待。同时,随着硬件性能提升,未来有望进一步提高求解效率和准确性。
2025-05-10 21:18:41 270KB
1
内容概要:本文详细介绍了基于FPGA(现场可编程门阵列)实现数字识别、视频采集及实时显示到VGA显示屏的技术过程。首先阐述了FPGA的强大之处及其在数字信号处理领域的优势。接着分别讲解了数字识别、视频采集和VGA显示的具体实现方法,包括Verilog代码示例、硬件接口配置、图像处理算法优化等内容。文中还分享了许多实际开发中的经验和技巧,如摄像头配置、图像预处理、VGA时序控制等。 适合人群:对FPGA开发感兴趣的电子工程技术人员、嵌入式系统开发者、数字电路爱好者。 使用场景及目标:适用于需要进行图像处理、数字识别和实时显示的应用场合,如工业检测、安防监控、教育实验等。目标是帮助读者掌握基于FPGA的完整图像处理链路的设计与实现。 其他说明:文章不仅提供了详细的理论解释和技术细节,还结合了作者的实际开发经验,给出了许多实用的调试建议和优化方法。对于初学者来说,可以通过本文快速入门FPGA开发;而对于有一定基础的开发者,则可以获得更多的实战经验和灵感。
2025-05-07 09:51:23 676KB
1
在MATLAB环境下开发的交通标志识别技术实现面板GUI,是一个针对计算机网络期末复习设计的综合性项目。该项目深入研究了交通标志图像的识别与分类算法,并将这些算法集成于图形用户界面(GUI)中,使得用户能够通过友好的交互界面实现交通标志的自动识别。 项目的核心在于利用MATLAB强大的数学计算能力和图像处理功能。MATLAB提供了丰富的图像处理工具箱,这些工具箱中包含了大量的函数,可以实现图像的加载、显示、分析以及处理等功能。在交通标志识别的场景下,这些功能被用于图像预处理、特征提取、分类器设计等关键步骤。 图像预处理是识别过程的第一步,通常包括灰度化、二值化、滤波去噪、图像增强等步骤。灰度化处理将彩色图像转换为灰度图像,简化计算量;二值化处理则是将图像转换为只有黑白两色,有助于突出交通标志的轮廓;滤波去噪用来去除图像中的噪声干扰,提高识别准确率;图像增强则可以改善图像质量,使交通标志的特征更加明显。 特征提取是识别过程中至关重要的一步,它关乎识别算法的效率和准确性。在MATLAB中,可以通过提取颜色直方图、边缘特征、形状特征等方法来描述交通标志的特征。颜色直方图能够体现图像中颜色的分布情况;边缘特征反映了图像中物体的轮廓信息;而形状特征则可以从几何角度描述对象的形状特征。 分类器的设计是交通标志识别的最后一步,也是实现智能识别的核心。MATLAB支持多种机器学习算法,如支持向量机(SVM)、神经网络、决策树等。在交通标志识别中,通常会采用SVM分类器,因为它在处理高维数据,尤其是图像数据时具有很好的性能。通过大量的交通标志图像训练,可以建立一个训练好的模型,用于对未知交通标志进行分类识别。 GUI的设计使得这一复杂的技术过程变得简单易用。MATLAB提供了开发GUI的便捷工具,如GUIDE或App Designer等,可以快速构建出美观、实用的用户界面。在该面板GUI中,用户可以通过点击按钮、选择文件等方式,轻松加载待识别的交通标志图像,并通过调用后端算法进行识别处理。识别结果会以图像标注或者文字提示的形式展现给用户,从而实现了一个交互式的交通标志识别系统。 在计算机网络期末复习的背景下,该项目不仅仅是一个编程练习,更是一次对计算机视觉和模式识别知识的综合应用。它要求学生不仅理解相关算法,还要学会如何将理论知识应用于实际问题的解决中,体现了理论与实践相结合的教学理念。 此外,该项目还可能涉及到计算机网络方面的知识,比如网络中数据的传输、存储和处理。虽然主要焦点是图像识别技术,但网络通信的基本概念和技术同样在项目开发中发挥作用,例如,在线更新分类模型、远程数据访问等场景。因此,该项目也是对计算机网络知识的一种复习和应用。 基于MATLAB的交通标志识别技术实现面板GUI项目是一个实践性很强的综合性项目,它结合了图像处理、机器学习以及计算机网络等多方面的知识,是期末复习的理想选择,能够帮助学生巩固和拓展计算机科学与技术的专业知识。
2025-04-26 11:52:05 255KB matlab
1
三电平储能变流器 Simulink 仿真,三电平储能变流器Simulink仿真研究:优化Q-U控制与SPWM载波层叠技术实现高效率功率控制,三电平储能变流器 simulink 仿真 基本工况如下: 直流母线电压:1500V 交流电网 :690 10kV 拓扑:二极管钳位型三电平逆变器 功率:300kW逆变,200kW整流 可实现能量的双向流动,整流、逆变均可实现 调制:可选SPWM载波层叠或svpwm调制 包含中点电位平衡,平衡桥臂实现 电压、电流THD<1%符合并网要求 双闭环控制: 外环:Q-U控制,直流电压控制 内环:电流内环控制 储能侧:双向Buck Boost电路,实现功率控制 ,默认 2018 版本 ,三电平储能变流器; Simulink仿真; 直流母线电压; 交流电网; 二极管钳位型三电平逆变器; 功率; 能量双向流动; 调制; 中点电位平衡; 双闭环控制; 储能侧; Buck Boost电路。,三电平储能变流器Simulink仿真工况研究
2025-04-08 14:05:24 5.37MB
1
FLAC3D隧道施工全流程解析:从开挖到支护结构生成的全命令集实践 超前加固体、二衬、初衬及锚杆一体化的精细隧道工程实施 以网格模型生成技术实现高效FLAC3D隧道开挖与支护操作指南,flac3d隧道台阶法命令 flac3d隧道开挖命令,支护结构包含超前加固体,二衬,初衬,锚杆,锁脚锚杆,网格模型采用命令生成(不是犀牛或其他外置软件做成后导入)。 下附图片分别为开挖后围岩体的位移云图和应力云图,计算结果准确有效,可为相关计算提供参考 ,flac3d隧道台阶法命令; flac3d隧道开挖命令; 超前加固体; 二衬; 初衬; 锚杆; 锁脚锚杆; 网格模型生成命令; 围岩体位移云图; 应力云图; 计算结果准确有效。,FLAC3D隧道施工模拟:多支护结构与网格模型生成命令实战解析
2025-04-01 15:18:29 1.84MB gulp
1