深度学习推荐模型 (1).png
2021-05-05 11:01:26 2.91MB 深度学习
1
:传统的协同过滤推荐技术主要基于用户-项目评价数据集进行挖掘推荐,没有有效地利用用户通信上下文 信息,从而制约其进一步提高推荐的精确性。针对传统协同过滤推荐算法存在的推荐精度不高的弊端,在协同过滤 算法中融入通信上下文信息,引入了通信信任、相似信任和传递信任三个信任度,并提出了一种基于信任的协同过滤 推荐模型。通过公开数据集验证测试,证明提出的推荐算法较传统的协同过滤推荐技术在推荐准确性上有较大提高。
2021-05-04 18:19:11 1.58MB 协同过滤 推荐系统 信任模型 推荐算法
1
将知识图谱作为辅助信息引入到推荐系统中,可以有效地增强推荐系统的学习能力,提高推荐系统的精准度和用户满意度。针对知识图谱上的偏好传播问题,提出一种基于知识图谱用户偏好传播的实体推荐模型,目的是在传播偏好的同时兼顾传播强度,提高推荐效果。通过提取不同特定属性的基本特征控制用户偏好在知识图谱上的传播强度,然后根据每个用户的历史偏好传播强度在知识图谱上迭代计算,得到用户—项目对的偏好传播模型,最终通过排序学习进行top N推荐。最后,在三个不同类型数据集上的对比实验验证该模型算法的有效性。实验证明,在偏好传播的同时控制传播强度可以很好地提升推荐系统的准确率、召回率以及F1值,同时具有很强的灵活性和可解释性。
2021-04-30 17:02:58 1.59MB 知识图谱 偏好传播 top
1