将循环神经网络中的长短期记忆网络和前馈注意力模型相结合,提出一种文本情感分析方案。在基本长短期记忆网络中加入前馈注意力模型,并在TensorFlow深度学习框架下对方案进行了实现。根据准确率、召回率和F1测度等衡量指标,与现有的方案对比表明,提出的方案较传统的机器学习方法和单纯的长短期记忆网络方法有明显的优势。
1
pytorch实现文本情感分析详细教程 关键词:python,情感分析,英文文本分类,Bi-LSTM 训练集准确度高达98%,验证集准确度最高达到82%,数据集来自竞赛平台DataCastle,竞赛链接为:https://challenge.datacastle.cn/v3/cmptDetail.html?spm=5176.12282016.0.0.31ed52e3oG2G01&id=359,本代码可以帮助大家获取前70的排名成绩,后续可以进行二次修改,有望冲击前50。
2023-04-22 14:40:48 259.93MB 情感分析 文本分类 pytroch python
1
面向中文歌词的音乐情感分类的研究,主要是分析如何在歌词文本中选择特征项,根据选出的特征项进行情感分类。
2023-03-29 09:53:53 2.68MB 歌词文本 情感分类
1
本项目通过textcnn卷积神经网络实现对文本情感分析识别,由python 3.6.5+Pytorch训练所得。
2023-03-22 16:44:42 289KB pytorch python 文本分类 情感分析
1
基于训练好的语言模型(使用gensim的word2vecAPI),编写了一个情感分类模型,包含一个循环神经网络模型(LSTM)和一个分类器(MLP)。首先,将一个句子中的每个单词对应的词向量输入循环神经网络,得到句子的向量表征。然后将句向量作为分类器的输入,输出二元分类预测,同样进行loss 计算和反向梯度传播训练,这里的 loss 使用交叉熵 loss。
2023-03-19 15:08:18 12KB nlp pytorch lstm rnn
1
对下载的IMDB数据集中的test和train分别进行预处理从而方便后续模型训练,代码为PreProcess.py。预处理主要包括:大小写转化、特殊字符处理、stopwords过滤、分词,最后将处理后的数据存储为CSV格式,以方便后续调试。借用了nltk的 stopwords 集,用来将像 i, you, is 之类的对分类效果基本没影响但出现频率比较高的词,从训练集中清除。
2023-03-01 16:29:27 1KB pytorch RNN lstm 情感分类
1
基于BERT的德语社交媒体文本情感分析,李澜,叶勇超,德语语法复杂,语序多变,造成其社交媒体文本情感分析难度较大,相关研究较少。为解决以上研究难点,本文分析了德语及其社交媒体文本��
2022-08-24 00:22:49 1.41MB 德语文本
1
使用bert进行文本情感分类的源码
2022-08-23 20:37:05 9KB bert 深度学习
1
对话情绪识别 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。 对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。
2022-07-21 10:07:33 78.87MB 人工智能 神经网络 深度学习 机器学习
1
用于本项目文本情感分析部分的源码
2022-05-31 00:29:56 173KB 源码软件
1