Macrodex 是一种计算应用程序,它允许通过哥伦比亚安蒂奥基亚省(拉尼特拉河、圣胡安和考卡河)河流的实验室规模数字照片识别和识别水生无脊椎动物。 受训流派: - Traulodes - 旅行者- 肢端神经症- Smicridea 作者: Juan Pablo Serna López, jpablo.serna@udea.edu.co 大卫斯蒂芬费尔南德斯麦肯,david.fernandez@udea.edu.co 胡安·塞巴斯蒂安·洛博·拉米雷斯,juan.lobo@udea.edu.co Daniel Uribe Giraldo, daniel.uribeg@udea.edu.co Fabio de Jesús Vélez Macías, fabio.velez@udea.edu.co Néstor Jaime Aguirre Ramírez, nestor.aguirre
2022-06-06 08:40:20 39.8MB matlab
1
基于matlab的表情识别代码从面部表情识别情绪 目录 介绍 在实施和测试基本机器学习技术方面的动手经验。 将要检查的技术是决策树(DT)和人工神经网络(ANN)。 这些技术中的每一种都将用于基于一组标记的面部动作单元(AU)从人的面部表情中识别出六种基本情绪(愤怒,厌恶,恐惧,幸福,悲伤和惊奇)。 后者对应于人类面部肌肉的收缩,这是每一个面部表情的基础,包括六种基本情感的面部表情。 前述技术的实施需要对这些技术的理解。 面部动作编码系统和基本情绪 在计算机科学研究中,当今时代的一大挑战是对人类面部表情的自动识别。 能够执行此任务的机器在行为科学,安全性,医学,游戏和人机交互(HMI)等领域具有许多应用。 众多认知科学家已经证明了面部表情在人际交流中的重要性。 例如,我们使用面部表情来同步对话,显示我们的感受并表示同意,否定,理解或困惑,仅举几例。 因为人与人之间的交流比人与机器之间的交流更为自然,所以设计能够模拟人与人之间的交互以实现人与机器之间相同自然交互的机器是逻辑上的一步。 为此,机器应该能够检测并理解我们的面部表情,因为它们是人与人之间交流的重要组成部分。 流式细胞仪 传统上
2022-05-16 22:31:05 1.45MB 系统开源
1
心血管疾病是全球死亡的主要原因之一,在世界范围内日益引起社会关注。 随着技术的出现,机器学习和可穿戴技术的融合为医学领域带来了巨大的好处,它提供了高度准确,可靠和强大的无缝解决方案。 通过早期发现并降低医疗成本,这使患者社区受益。 以及为医学博爱提供有效,可扩展,准确和可靠的预测系统。 本文对用于各种心血管疾病的预测/分类的机器学习算法进行了广泛的调查。 我们将介绍各种模式的见解,例如心音,电子健康记录,生理信号和CT图像,以成功检测出心脏病,并且还将介绍流行的机器学习系统,模糊系统,混合系统的亮点。 从这篇评论中可以注意到,SVM已被广泛使用,随后是神经网络和集成技术。 通过集成技术,其次是SVM和CNN,可以达到95%以上的最高准确度。
2022-05-11 01:02:02 622KB - Cardiovascular disease detection
1
预后大肠癌 该项目展示了我们在论文中使用的方法:使用机器学习技术对结直肠癌的复发进行预后,可在(链接)上找到。 所需的库 Tsfresh-从时间序列中提取表格特征所必需。可以通过pip install tsfresh 学习失衡-可选;仅当您希望使用欠采样和过采样技术来解决不平衡数据集问题时。可以按照文档进行安装 脾气暴躁的 大熊猫 Scikit学习 Matplotlib 数据集 数据集是合成的,由表格和时间序列数据组成。这两个数据集都是使用dataset/create_simul_data.ipynb代码生成的。提供了笔记本以供参考,但是请注意,重新运行笔记本将生成新的(和不同的)数据集。 如何运行我们的模型 通过按照notebooks/predicting_recurrence.ipynb代码,可以直接在合成数据集上运行它。在笔记本中,我们演示了初步的数据集探索和预处理,使用Tsfres
2022-05-09 19:55:07 606KB JupyterNotebook
1
人工智能-机器学习-技术准备度在消费者感知和采纳移动应用程序中的作用.pdf
2022-05-08 14:09:43 6.24MB 人工智能 机器学习 文档资料
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:49 4.07MB 机器学习 学习 文档资料 综合资源
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:49 1.31MB 机器学习 学习 文档资料 综合资源
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:48 1.31MB 机器学习 学习 近邻算法 文档资料
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:47 1.57MB 机器学习 学习 文档资料 人工智能
【课程简介】 本课程适合所有需要学习机器学习技术的同学,课件内容制作精细,由浅入深,适合入门或进行知识回顾。 本章为该课程的其中一个章节,如有需要可下载全部课程 全套资源下载地址:https://download.csdn.net/download/qq_27595745/85252312 【全部课程列表】 第1章 机器学习和统计学习 共75页.pptx 第2和12章 感知机和统计学习方法总结 共27页.pptx 第3章 k-近邻算法 共69页.pptx 第4章 贝叶斯分类器 共79页.pptx 第5章 决策树 共98页.pptx 第6章 Logistic回归 共75页.pptx 第7章 SVM及核函数 共159页.pptx 第8章 adaboost 共75页.pptx 第9章 EM算法 共48页.pptx 第10章 隐马尔科夫模型 共64页.pptx 第11章 条件随机场 共63页.pptx 第13章 无监督学习概论 共27页.pptx 第14章 聚类方法 共52页.pptx 第15章 奇异值分解 共66页.pptx 第16章 主成分分析 共67页.pptx 第17章 潜在语义
2022-05-04 12:05:47 1.32MB 机器学习 学习 决策树 文档资料