yolov5/yolov8/yolo11/yolo目标检测数据集,人爬墙识别数据集及训练结果(含yolov8训练结果与模型),1016张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 2个类别:没爬墙,在爬墙。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151864777 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-10-30 17:10:49 122.32MB yolov5数据集 yolo数据集
1
DeepBGC:生物合成基因簇的检测和分类 DeepBGC使用深度学习来检测细菌和真菌基因组中的BGC。 DeepBGC使用双向长期短期记忆递归神经网络和Pfam蛋白域的word2vec样载体嵌入。 使用随机森林分类器预测产品类别和检测到的BGC的活性。 :pushpin: 消息 :pushpin: DeepBGC 0.1.23:预测BGCs现在可以在antiSMASH使用JSON输出文件被上传用于可视化 根据以下说明,照常安装和运行DeepBGC 上传antismash.json从DeepBGC输出文件夹使用“上传额外的注释” 页 预测的BGC区域及其预测分数将与antiSMASH BGC一起显示 刊物 用于生物合成基因簇预测的深度学习基因组挖掘策略Geoffrey D Hannigan,David Prihoda等人,《核酸研究》,gkz654, //doi.org/10.1093/nar/gkz654 使用
2025-10-29 18:34:24 557KB python deep-learning bidirectional-lstm
1
本文提出一种名为IOPLIN的深度学习框架,用于自动检测多种路面病害。该方法通过迭代优化补丁标签推断网络,仅需图像级标签即可实现高精度检测,并能粗略定位病害区域。创新的EMIPLD策略解决了无局部标注的难题,结合CLAHE预处理与EfficientNet骨干网络,充分挖掘高分辨率图像信息。研究团队构建了含6万张图像的大规模数据集CQU-BPDD,涵盖七类病害,推动领域发展。实验表明,IOPLIN在AUC、精确率与召回率上均优于主流CNN模型,尤其在高召回场景下优势显著。其具备强鲁棒性与跨数据集泛化能力,适用于真实复杂路况。该技术可用于路面筛查与病害定位,大幅降低人工成本,助力智慧交通运维。代码与数据集已公开,促进学术共享。
2025-10-29 17:39:42 10.97MB 路面检测 AI 计算机视觉
1
1、设计内容 多路远程温度检测系统采用分布式检测结构,由一台主机系统和2台从机 系统构成,从机根据主机的指令对各点温度进行实时或定时采集,测量结果不 仅能在本地存储、显示,而且可以通过串行总线将采集数据传送至主机。主机 的功能是发送控制指令,控制各个从机进行温度采集,收集从机测量数据,并 对测量结果进行分析、处理、显示和打印。主机部分采用PC,从机的微处理器 采用嵌入式系统,从机的信号输入通道由温度传感器、信号调理电路以及 A/D 转换器等构成。主机与从机之间采用串行总线通信。 2、系统功能 (1) 检测温度范围为0~400℃; (2) 温度分辨率达到0.1℃; (3) 使用串行总线进行数据传输; (4) 可由主机分别设置各从机的温度报警上、下限值,主机、从机均具有 报警功能; (5) 主机可实时、定时收集各从机的数据,并具有保存数据、分析24小 时数据的功能(显示实时波形和历史波形)。 3、设计任务 (1)完成硬件设计; (2)完成软件设计,包括:主机程序、主从机通信程序、从机温度检测程 序、显示程序、温度越线报警程序。 (3)完成仿真和系统模型实物制作
2025-10-29 16:58:14 7.53MB 课程设计 武汉理工大学
1
C++实现峰值检测,可根据阈值、峰值距离筛选峰值等同于matlab findpeak函数 头文件如下 #ifndef __FINDPEAKS__ #define __FINDPEAKS__ #include struct peak { int index; float value; }; bool comparePeaks(const peak& a, const peak& b); bool compareIndex(const peak& a, const peak& b); std::vectorfindPeaks(const std::vector& src, int distance = 0, float threshold = 0); #endif
2025-10-29 16:45:38 1KB matlab
1
一、基础信息 数据集名称:塑料目标检测数据集 图片数量: 训练集:138张图片 分类类别: Plastic(塑料) 标注格式: YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式: 图片来源于实际采集,常见图像格式如JPEG。 二、适用场景 塑料物品识别系统开发: 数据集支持目标检测任务,帮助构建AI模型自动检测塑料物品,应用于垃圾分类、回收自动化系统等场景。 工业制造检测: 在生产线或质量控制中,识别塑料材料或部件,提升制造效率和准确性。 环境废物监测: 用于识别塑料污染或废物,支持环境清理项目或可持续性研究。 三、数据集优势 精准标注: 标注采用YOLO格式,边界框定位精确,类别标签一致,确保模型训练可靠性。 任务适配性强: 兼容主流目标检测框架(如YOLO),可直接加载使用,支持快速模型开发。 实用性强: 数据集专注于塑料检测类别,提供真实场景图像,便于模型学习和实际部署应用。
2025-10-29 11:00:53 10.56MB 目标检测数据集 yolo
1
本次提供的 halcon DeepLearningTool 是机器视觉软件 HALCON 集成的深度学习工具包,专为工业视觉检测场景设计,提供从数据标注、模型训练到推理部署的全流程深度学习开发支持。该工具包基于 HALCON 的机器视觉算法体系,内置多种预训练模型(如目标检测、图像分类、语义分割等),支持自定义数据集训练,可快速构建适用于缺陷检测、物体识别、字符识别等工业场景的深度学习解决方案。 工具核心功能包括:可视化数据标注工具(支持矩形框、像素级分割等标注方式)、模型训练引擎(支持迁移学习、增量训练,兼容 CPU/GPU 加速)、模型评估模块(提供准确率、召回率等量化指标)以及轻量化推理接口(可直接集成到生产环境)。同时支持与 HALCON 传统视觉算子结合,实现 "深度学习 + 传统算法" 的混合检测方案,兼顾检测精度与效率。 适用人群主要为工业机器视觉领域的算法工程师、自动化设备开发人员、智能制造企业的技术研发人员,以及高校从事机器视觉研究的师生,尤其适合需要快速将深度学习技术应用于工业检测场景的团队。 使用场景涵盖:电子制造业中的 PCB 板缺陷检测、汽车零部件表面瑕疵识别、包装行业的标签字符识别、物流领域的包裹分拣分类、医药行业的药瓶外观检测等。通过该工具,开发者可大幅缩短深度学习模型的开发周期,降低工业视觉系统的部署门槛。 其他说明:使用前需确保已安装对应版本的 HALCON 基础软件;工具包提供 C++、C#、Python 等多语言接口,方便集成到不同开发环境;建议搭配 HALCON 官方的深度学习示例数据集进行入门学习;部分高级功能(如自定义网络结构)需要具备一定的深度学习理论基础;工业场景中需注意图像采集质量对模型效果的影响,建议配合专业光学系统使用;技术问题可参考 HALCON 官方文档或 CSDN 社区的工业深度学习实践案例。
2025-10-28 22:50:30 760.64MB HALCON
1
“基于YOLO V8的金属表面缺陷检测识别系统——从源代码到实际应用的完整解决方案”,"基于YOLO V8的金属表面缺陷智能检测与识别系统:Python源码、Pyqt5界面、数据集与训练代码的集成应用报告及视频演示",基于YOLO V8的金属表面缺陷检测检测识别系统【python源码+Pyqt5界面+数据集+训练代码】 有报告哟 视频演示: 金属表面缺陷的及时检测对于保障产品质量和生产安全至关重要。 然而,传统的人工检测方法往往效率低下、耗时长,并且容易受主观因素影响。 为了解决这一问题,我们提出了基于深度学习技术的金属表面缺陷检测系统。 本项目采用了Yolov8算法,这是一种高效的目标检测算法,能够在图像中快速准确地检测出各种目标。 我们将其应用于金属表面缺陷的检测,旨在实现对金属表面缺陷的自动化检测和识别。 数据集的选择是本项目成功的关键之一。 我们收集了大量金属表面缺陷图像,这些数据为模型的训练提供了充分的支持,确保了模型在各种情况下的准确性和稳定性。 在训练过程中,我们采用了迁移学习的方法,利用预训练的Yolov8模型,并结合我们的金属表面缺陷数据集进行了进一步的微调和优化。
2025-10-28 12:51:55 2.27MB
1
金属表面缺陷检测数据集 一、基础信息 数据集名称:金属表面缺陷检测数据集 图片数量: 训练集:12,027张图片 验证集:1,146张图片 测试集:572张图片 总计:13,745张工业制造场景中的金属表面图片 分类类别: - 边缘毛刺(EDGEBURR) - 边缘凹痕(EDGEDENT) - 长划痕(LONGSCRATCH) - 点蚀群(PITSCLUSTER) - 点蚀点(PITSDOTS) - 翻边毛刺(ROLLOVERBURR) - 粗糙斑块(ROUGHPATCH) - 短划痕(SHORTSCRATCH) - 表面凹痕(SURFACEDENT) - 表面斑块(SURFACEPATCH) 标注格式: YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式:来源于工业制造场景的金属表面图像,格式为JPEG/PNG。 二、适用场景 工业制造质量检测系统开发: 数据集支持目标检测任务,帮助构建自动识别金属表面缺陷的AI模型,用于生产线上的实时质量检测,提高产品良率。 自动化质量控制流程: 集成至工业自动化系统,实现对金属零部件的自动缺陷检测,减少人工成本,提升检测效率。 学术研究与工业应用创新: 支持计算机视觉在工业检测领域的研究,为智能制造提供数据支撑。 工业检测技术培训: 数据集可用于制造业培训,帮助工程师识别各类金属表面缺陷,提升专业技能。 三、数据集优势 缺陷覆盖全面: 包含10种金属表面常见缺陷类型,涵盖毛刺、凹痕、划痕、点蚀、斑块等关键工业缺陷特征。 数据规模庞大: 提供超过1.3万张高质量标注图像,确保模型训练的充分性和鲁棒性。 标注精确可靠: 采用YOLO格式的标准边界框标注,定位准确,可直接用于主流深度学习框架的目标检测模型训练。 工业应用价值高: 数据来源于真实工业场景,直接服务
2025-10-28 12:49:18 487.31MB yolo 目标检测 缺陷检测 金属缺陷检测
1
内容概要:本文介绍了一种基于YOLO V8算法的金属表面缺陷检测系统,旨在解决传统人工检测效率低、易受主观因素影响的问题。系统采用深度学习技术,通过Python源码、Pyqt5界面、数据集和训练代码的集成,实现了金属表面缺陷的自动化检测和识别。文中详细描述了数据集的构建、模型训练(包括迁移学习)、界面开发(如参数调节、实时反馈)以及视频流处理的技术细节。此外,还介绍了模型的优化方法,如卷积层和BN层的融合、数据增强、异步处理等,以提高检测精度和速度。最后,提到了模型的实际应用案例及其带来的显著改进。 适合人群:从事机器学习、计算机视觉领域的研究人员和技术人员,尤其是对工业质检感兴趣的开发者。 使用场景及目标:适用于金属制造行业的质量检测环节,目标是提高产品质量和生产效率,降低生产成本和安全风险。具体应用场景包括图像和视频的缺陷检测、摄像头实时监测等。 其他说明:项目还包括一些额外功能,如热力图可视化,用于解释模型决策逻辑,增加系统的可信度。未来计划进行模型轻量化,以便在边缘设备上运行。
2025-10-28 12:45:10 3.14MB Augmentation
1