内容概要:文章详细探讨了BP神经网络的基本原理和具体实现方法,并展示了其在江苏省军工产业持续创新发展中的实际应用。文中不仅深入介绍了BP神经网络的工作机制,如输入层、隐藏层及输出层的功能以及反向传播算法的细节推导过程,而且还解释了利用BP神经网络对军工产业持续创新能力评估的具体步骤。通过构建合理的样本集进行训练,最后通过模拟实验证明BP神经网络在预测该领域的指标方面的高效性和精确度。 适合人群:具有一定编程技能并对人工智能感兴趣的高等院校研究人员、工程技术人员或从事军事工业相关的从业者。 使用场景及目标:本文旨在为从事或关注军事工业领域的人士提供一个新的分析工具,以帮助他们更好地理解和预测产业创新的影响因素,并提出有效的改进建议。具体应用场景包括但不限于企业决策支持、政策规划、投资战略等。 其他说明:文章附带了一个详细的案例——关于江苏省军工产业发展情况的研究成果,通过该研究证明BP神经网络的有效性;另外,还提供了几个公式来阐述网络训练中权重更新的原则,有助于读者进一步理解模型背后的技术逻辑。
1
智慧大棚-物联网应用毕业设计 智慧大棚是指使用物联网技术监控和管理大棚的温室气候、土壤湿度、光照强度、气体浓度等环境因素,以提高作物的生长速度和产量。该系统可以实时监控大棚中的环境变化,并自动采取相应的控制措施,以维持最佳的生长环境。 在物联网技术中,感知层是物联网的基础,负责实时采集各种环境信息,如温度、湿度、光照强度等。该层由各种传感器和传感器网关构成,如二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID 标签和读写器、摄像头、GPS 等感知终端。 网络层是物联网的核心,负责传递和处理感知层获取的信息。该层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑。 应用层是物联网和用户(包括人、组织和其他系统)的接口,负责实现物联网的智能应用。该层与行业需求结合,实现物联网在绿色农业、工业监控、公共安全、城市管理、远程医疗、智能家居、智能交通和环境监测等领域的应用。 智慧大棚-物联网应用毕业设计的主要技术架构包括: 1. 感知层:使用各种传感器和传感器网关采集环境信息,如温度、湿度、光照强度等。 2. 网络层:使用私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等传递和处理感知层获取的信息。 3. 应用层:使用物联网技术实现智能家居、交通物流、环境保护、公共安全、智能消防、工业监测等领域的应用。 智慧大棚-物联网应用毕业设计的主要优点包括: 1. 实时监控:可以实时监控大棚中的环境变化,自动采取相应的控制措施,以维持最佳的生长环境。 2. 高效节能:可以通过自动控制系统实现节能,减少能耗,降低成本。 3. 提高产量:可以通过优化环境条件,提高作物的生长速度和产量。 4. 便于管理:可以通过物联网技术实现远程监控和自动控制,降低人工干预的可能性。 智慧大棚-物联网应用毕业设计的主要应用领域包括: 1. 绿色农业:使用物联网技术实现智能农业,提高作物的生长速度和产量。 2. 工业监控:使用物联网技术实现工业监控,提高工业生产效率和产品质量。 3. 公共安全:使用物联网技术实现公共安全监控,提高公共安全水平。 4. 城市管理:使用物联网技术实现城市管理,提高城市的管理效率和服务水平。 智慧大棚-物联网应用毕业设计是一个具有很高应用价值的项目,对于提高农业生产效率、提高公共安全水平和城市管理效率等方面具有重要意义。
2025-06-07 11:47:12 327KB
1
Matlab Simulink在车辆悬架建模仿真中的应用与探讨,Matlab Simulink车辆悬架建模仿真分析与优化,matlab simulink车辆悬架建模仿真 ,核心关键词:Matlab; Simulink; 车辆悬架; 建模仿真;,MATLAB Simulink车辆悬架系统建模与仿真研究 在汽车工程领域中,车辆的悬架系统扮演着至关重要的角色,它直接关系到汽车的行驶平稳性、乘坐舒适性以及操控安全性。随着科技的进步,对车辆悬架系统的设计与仿真要求越来越高,传统的手工计算与实验方法已经难以满足现代汽车工程的需要。Matlab Simulink作为一种强大的系统仿真工具,为车辆悬架系统的建模与仿真提供了新的解决方案。本文将探讨Matlab Simulink在车辆悬架建模仿真中的应用,并对仿真分析与优化进行详细探讨。 Matlab Simulink是一个基于Matlab的交互式图形环境,它集成了动态系统建模、仿真和综合分析的功能。在车辆悬架建模仿真中,Matlab Simulink能够帮助工程师快速构建出悬架系统的数学模型,并通过图形化界面直观地展示系统的动态响应。Simulink提供了丰富的模块库,包括物理建模模块、控制模块、信号处理模块等,这些模块可以被直接应用或者组合使用,使得复杂的悬架系统建模变得简单高效。 在实际的车辆悬架建模过程中,工程师首先需要根据悬架系统的工作原理,确定系统的物理参数,如刚度、阻尼、质量等。然后,利用Matlab Simulink中的模块搭建悬架系统的仿真模型。在这个模型中,可以设置不同的输入信号来模拟不同的路面激励,如随机路面、阶跃路面等,然后观察系统的输出,比如悬架的位移、速度、加速度等响应。 仿真分析是验证模型正确性和评估系统性能的重要手段。通过Matlab Simulink的仿真分析,工程师可以直观地看到系统在不同激励下的响应情况。对于悬架系统而言,这包括了对悬架动行程、车身加速度、轮胎与路面之间的接触力等关键性能指标的分析。通过这些分析,工程师可以对悬架系统进行优化设计,比如调整悬架的刚度和阻尼参数,以达到理想的乘坐舒适性和车辆操控性。 优化设计是车辆悬架建模仿真中的核心环节。优化的目标是找到一组最佳的悬架参数,使得车辆在不同工况下的性能达到最优。Matlab Simulink提供了一套完整的仿真优化工具箱,如Simulink Design Optimization工具箱,它可以通过定义目标函数、约束条件以及设计变量来进行参数优化。优化算法包括梯度下降法、遗传算法、粒子群优化等,工程师可以根据具体问题选择合适的算法进行悬架系统的参数优化。 此外,Matlab Simulink还支持与Matlab编程环境的无缝集成,这为悬架系统仿真提供了更高的灵活性。例如,工程师可以在Matlab环境下编写自定义的模块和函数,然后直接在Simulink模型中使用。此外,Matlab强大的数值计算能力和丰富的工具箱资源,如自动控制工具箱、信号处理工具箱等,都可以为车辆悬架系统仿真提供更深层次的支持。 Matlab Simulink在车辆悬架建模仿真中的应用,不仅提高了建模和仿真的效率,而且增强了模型的准确性和仿真结果的可信度。通过不断优化仿真模型和分析结果,可以更有效地指导悬架系统的设计与改进,这对于提升汽车工程的整体水平具有重要意义。
2025-06-06 23:56:37 3.13MB
1
ROS机械臂仿真技术:ure5与RealSense的手眼标定与跟随系统研究与应用,基于ROS的机械臂视觉抓取技术的探索与实践,ros机械臂仿真 1.ure5+real sense,手眼标定+跟随 2.基于ros的机械臂视觉抓取 ,ROS机械臂仿真; URE5+RealSense; 手眼标定跟随; 基于ROS的机械臂视觉抓取,ROS机械臂仿真:手眼标定与跟随的视觉抓取 在当前的机器人领域,ROS(机器人操作系统)已经成为了一个非常重要的工具,特别是在机械臂的仿真领域,ROS提供了强大的功能和丰富的开源代码库,使得研究人员和工程师可以在一个较为简便的环境下进行机器人的控制与研究。本文档重点探讨了ROS机械臂仿真技术,特别是URE5与RealSense相结合的手眼标定与跟随系统的研究与应用,同时涉及到了基于ROS的机械臂视觉抓取技术。 URE5与RealSense的结合,为机械臂提供了高效的空间感知能力。RealSense是一种深度感知相机,它可以提供丰富的场景信息,包括深度信息、颜色信息等,这对于机器人操作来说至关重要。而URE5是一种先进的控制系统,它能够有效地处理来自RealSense的信息,结合手眼标定技术,可以精确地定位物体的位置,实现精确的抓取和操作。 手眼标定是机械臂视觉系统中的一项关键技术,它通过校准机械臂的相机坐标系与机械臂的运动坐标系之间的相对位置关系,使得机械臂能够准确地根据相机捕获的图像信息进行操作。这一过程在机器人视觉抓取任务中尤为关键,因为它确保了机械臂可以精确地理解其操作环境并作出反应。 跟随系统是智能机器人领域的另一个研究热点,它可以使得机械臂能够在移动过程中,持续跟踪目标物体,从而实现动态环境下的精确操作。结合手眼标定技术,跟随系统能够提供更加准确和可靠的追踪效果。 文档中还提到了基于ROS的机械臂视觉抓取技术,这通常涉及到图像处理、特征提取、物体识别与定位以及路径规划等多个环节。视觉抓取技术的探索与实践,不仅提升了机械臂的自主性,也为机器人在物流、装配、医疗等领域的应用提供了技术基础。 通过上述技术的研究与应用,可以预见未来的机械臂不仅能够执行更为复杂的操作任务,还能够更加灵活地适应不同的操作环境。这将极大地推动智能制造、服务机器人等领域的技术进步。 展望未来,机械臂的仿真技术与实际应用之间还存在一定的差距,如何将仿真环境中获得的高精度数据和算法,更好地迁移到真实世界中的机械臂操作,是未来研究的重要方向。同时,随着深度学习等人工智能技术的发展,未来的机械臂可能将拥有更为智能的决策和学习能力,实现更为复杂的任务。 此外,文档中提到的标签"xbox",可能是文档在整理过程中的一个误标记,因为在本文档内容中,并没有涉及到任何与Xbox游戏机或者相关技术直接相关的信息。因此,在内容处理时应忽略这一标记。
2025-06-06 22:26:57 471KB xbox
1
FQ-PCR同步检测HCV以及HBV方法的建立及应用,周康平,柳小英,根据HBV Pre-S基因和HCV 5' UTR的保守序列设计引物及TaqMan-LNA探针,构建重组质粒作为荧光定量PCR的标准品。优化荧光定量PCR反应条件和反应�
2025-06-06 19:21:57 293KB 首发论文
1
内容概要:本文档详细介绍了SEMI设备通信标准SECS-II的消息传输协议及其具体应用,涵盖了消息头、事务超时、流和函数分配、事务协议、对话协议以及数据结构等内容。重点讨论了不同类型的流和它们的功能,如材料状态流、配方管理流等。文档还提供了具体的错误处理机制和事务流程,帮助开发者理解和实现SECS-II协议。 适合人群:半导体制造及相关行业的工程师和技术人员,尤其是那些需要进行设备间通信的系统集成和维护工作的专业人士。 使用场景及目标:本标准用于规范设备与主机之间的通信,确保设备之间的互操作性和可靠性。主要应用于半导体制造设备的控制系统中,帮助企业提高生产效率和产品质量。此外,开发者可以利用本标准进行设备集成、测试和维护。 阅读建议:本文档内容详尽且技术性强,建议在实际项目中结合具体应用场景进行学习。对于复杂的数据结构和事务流程,可以通过实验和调试来加深理解。 ps:pdf文字可复制
2025-06-06 18:46:28 998KB SEMI SECS-II 数据传输 通讯协议
1
HBV LAM耐药突变多重荧光定量方法的建立及初步应用,唐景峰,李卫,根据HBV LAM耐药突变位点,选择目前公认的且突变频率最高的rtL180M、rtM204I/V,设计AllgloTM探针及相关引物,构建重组质粒作为荧光定量PCR�
2025-06-06 18:23:20 792KB 首发论文
1
随着科技的不断进步,物联网技术在农业领域的应用逐渐拓宽,为智慧农业的发展提供了全新的可能性。物联网技术(Internet of Things, IoT)通过感知设备、网络连接、数据处理等手段,实现了对农业生产的智能化、自动化管理,从而极大提高了农业生产效率,降低了成本,也对保障粮食安全起到了积极的作用。 智能灌溉系统是物联网技术在智慧农业中的一个典型应用。通过在农田中部署各种传感器,可以实时监测土壤湿度、温度、光照强度等参数,系统将这些数据进行分析后,智能决定灌溉的时机和量。这样的自动化灌溉系统能有效提高水资源的利用率,减少水的浪费,同时保证作物能够得到适宜的水分,促进作物生长。 作物监控同样可以通过物联网技术实现。利用安装在农田中的传感器,可以实时监测作物的生长状况,包括但不限于湿度、温度、光照、营养物质等环境因素。这些数据被收集和分析后,能够帮助农户了解作物生长的每一个阶段,从而采取科学的管理措施,例如适时施肥、灌溉、修剪,以提高作物产量和品质,预防和减少病虫害的发生。 自动化喷洒系统则利用物联网技术实现了精准农业。通过在农业机械上安装智能控制系统,结合GPS定位技术,能够在精确的时间和地点喷洒农药或肥料。这不仅提高了喷洒的效率,还大大减少了化学药品的用量,有助于降低对环境的影响,同时保护农民的健康。 在仓储环节,智能仓储管理利用物联网技术对仓储环境进行监测和控制。通过安装温湿度传感器,实时监控仓储条件,防止粮食由于温度或湿度不适宜而造成损失或变质。此外,物联网技术还可以实现对粮仓内粮食存量的实时监控,保证粮食供应的稳定性。 智能农业机器人结合物联网技术,使得农业机械化水平得到大幅提高。这些机器人可以自动进行耕作、种植、施肥、除草、采摘等一系列复杂的农业生产活动。与传统的人工相比,智能农业机器人可以连续工作,无需休息,大大提高了工作效率。 物联网技术在智慧农业中的应用还包括数据分析和预测。通过收集和分析大量的农业生产数据,可以对未来的农业状况进行预测,例如预测病虫害发生的可能性,提前做好预防措施,或者根据气候变化调整农业生产计划,从而降低风险。 无人机在物联网技术的应用也日益广泛,特别是在农业遥感和监测方面。利用无人机搭载的传感器,可以快速收集农田的各种信息,如作物生长状况、病虫害发生区域等。这些信息可以帮助农户更好地了解农田情况,提高决策的科学性。 RFID技术在物联网农业中的应用也为农业生产和管理带来了便利。通过在农产品上贴附RFID标签,可以实现农产品从生产、加工到销售各环节的全程追溯。这不仅增加了农产品的透明度,也提高了农产品质量安全管理的水平。 物联网平台是智慧农业的神经中枢,通过集中处理来自各种传感器的数据,实现对农业生产全周期的智能管理和优化。物联网平台能够整合各类农业资源,如土地、气候、水资源等,提供决策支持,优化资源配置,提高农业生产的整体效率。 智能农业决策的实现,有赖于物联网技术对大量农业数据的收集和分析。通过人工智能和机器学习技术,可以对数据进行深度学习和分析,对农业生产进行智能化指导,帮助农民做出更合理的决策,以提高产量和质量。 物联网技术已经深入到智慧农业的各个方面,通过智能灌溉、作物监控、自动化喷洒、智能仓储管理、智能农业机器人、数据分析和预测、无人机应用、RFID应用、物联网平台以及智能农业决策等多种形式,大大推动了传统农业向智慧农业的转变。物联网技术的应用不仅提高了农业生产的智能化和自动化水平,还有利于实现农业的可持续发展,为未来农业的发展指明了方向。
2025-06-05 21:30:12 12KB
1
一、实验目的 1、掌握中规模集成计数器的逻辑功能及使用方法。 2、了解集成计数器的扩展及应用。 二、实验器材 1、数字电子实验箱 2、同步十进制可逆计数器74LS192×2;2输入四与门74LSO0×1 三、实验原理 计数器是数字系统中的重要组成部分,主要用于统计输入脉冲的数量。本次实验“计数器及其应用”旨在让学生掌握中规模集成计数器的逻辑功能和使用方式,并了解其扩展和应用。实验中使用的器材包括数字电子实验箱,以及同步十进制可逆计数器74LS192和2输入四与门74LS00。 74LS192是一款十进制同步可逆计数器,它可以执行加法和减法计数。计数器的特性包括异步清零(CR)、异步置数(L-D)、加计数脉冲输入(CPu)和减计数脉冲输入(CPD)。此外,它还具有数据输入端(D3, D2, D1, D0)和计数输出端(Q3, Q2, Q1, Q0),以及非同步加计数进位输出端(C-O)和非同步减计数借位输出端(B-O)。通过这些功能,74LS192可以实现多种计数模式,例如清零、置数、保持、加计数和减计数。 在实验中,学生可以通过74LS192的级联扩展来增加计数范围。例如,将两片74LS192级联可以构建一个100进制计数器。在这种级联结构中,低位计数器的进位输出端(C-O)或借位输出端(B-O)可以驱动高位计数器的计数脉冲输入,从而实现更高位的计数。在加法计数过程中,低位计数器每计满10个数,高位计数器就会加1,以此类推,可以构建更大范围的计数系统。 计数器的分类主要有基于计数进制(如二进制、十进制、任意进制)和计数趋势(加法、减法、可逆计数)两种方式。同步计数器和异步计数器的区别在于触发器翻转与计数脉冲同步与否。集成计数器因其低功耗和小巧的体积,在各种数字系统中广泛应用。 通过这个实验,学生不仅可以了解计数器的基本工作原理,还能学习如何操作和扩展计数器,从而更好地理解数字系统的时序电路设计。此外,实验报告应包括实验目的、所用设备、实验内容、操作步骤、数据记录、处理和结果,以及讨论部分,以加深对计数器应用的理解和思考。讨论部分可以涵盖实验中遇到的问题、解决方案以及对未来实验的展望,以促进理论与实践的结合,提高学生的分析和解决问题的能力。
1
基于PLC的西门子智能温室大棚全套控制系统设计:电气控制组态与S7-200组态王应用,智能农业温室大棚西门子基于PLC的控制系统设计大棚电气控制组态 S7-200组态王基于PLC的智能温室控制系统设计-全套 ,核心关键词:智能农业温室大棚; 基于PLC的控制系统设计; 西门子; S7-200组态王; 电气控制组态; 全套控制设计。,"西门子PLC智能农业温室控制组态设计-电气化改造的现代农业之选" 在现代农业领域中,智能农业温室大棚作为科技进步的产物,正逐渐成为农作物生长环境调控的重要技术手段。本文将深入探讨基于西门子PLC(可编程逻辑控制器)的智能温室大棚全套控制系统的设计理念、电气控制组态技术,以及S7-200组态王在智能温室中的应用。 智能温室大棚的控制系统设计是实现高效农业生产的关键。通过利用PLC技术,可以实现对温室内部环境的精确控制,包括温度、湿度、光照、二氧化碳浓度等因素,从而为作物生长提供最适宜的条件。西门子作为全球领先的自动化技术供应商,其PLC产品被广泛应用于智能温室控制系统中,尤其是在电气控制组态方面,西门子PLC因其稳定性、可靠性以及易于编程和扩展性等特点,被众多农业生产商和科研机构所采纳。 电气控制组态是智能温室控制系统的核心组成部分,它涉及到所有电器元件的布线、编程以及逻辑控制。在本文中,我们将详细介绍如何通过西门子PLC和S7-200组态王实现对温室中各种电气设备的高效控制,包括加热器、制冷机、照明设备、通风扇等。电气控制组态的设计需要考虑到控制系统对各个设备的控制需求,同时还要确保系统的安全性与维护的便捷性。 S7-200组态王是西门子专门为S7-200系列PLC设计的组态软件,它提供了丰富的图形化界面,方便用户进行系统参数的配置和监控。使用S7-200组态王,可以实现对智能温室的温度、湿度、光照等环境参数的实时监控和自动调节,大大提高了智能温室的运行效率和作物的产量。 在智能温室控制系统的设计过程中,还需要考虑到系统与外部环境的交互,例如通过温度传感器、湿度传感器、光照传感器等获取实时数据,并将这些数据反馈给控制系统,实现智能调节。此外,控制系统还应具备故障诊断、报警提示等功能,以便在出现问题时能够及时处理,保障系统的稳定运行。 智能温室大棚的设计不仅仅局限于电气控制系统,还包括对大棚结构、灌溉系统、施肥系统等方面的规划。智能农业温室大棚的目标是通过集成先进的控制技术和设备,实现对作物生长环境的全方位管理,减少人工干预,降低生产成本,提升作物品质和产量。 基于西门子PLC的智能温室大棚全套控制系统设计,是现代智能农业发展的重要方向。通过整合电气控制组态、S7-200组态王应用以及先进的传感技术和设备,可以实现对温室环境的精准控制,为农作物提供最佳生长条件,推动农业产业向更加高效、节能、环保的方向发展。
2025-06-05 15:25:02 463KB
1