主要内容:这篇文档展示了怎样在MATLAB环境中利用双向门控循环单元(BiGRU)建立模型,进行时间序列的数据预测。详细地介绍了创建时间系列样本集,BiGRU模型配置、构造和参数设定的过程,同时演示了使用提供的数据执行预测并呈现实际和预测值对比的方法. 适合人群:适合熟悉基本MATLAB用法,有一定机器学习基础知识的专业人士。 使用场景及目标:对于想要在时间和经济序列分析上得到更好的预测结果的技术研究者和从业者来说是有意义的学习与实验工具。 其他说明:本文提供了一份包含详尽的注释说明以及所需的数据的实用BiGRU时间序列预测脚本,便于快速启动项目的实操者学习。
1
PSM-DID, DID, RDD, Stata保姆级程序和数据百科全书式的宝典,含教学视频及实例数据,可自行学习,冲冲冲!!! 由于数据过大,保存至百度网盘,打开word可自行保存,永久有效!!!
2024-03-27 14:32:05 10KB 示例数据
1
1.输入多个特征,输出单个变量; 2.考虑历史特征的影响,多变量时间序列预测; 4.excel数据,方便替换; 5.运行环境Matlab2018b及以上; 6.输出R2、MAE、MBE等评价指标。
2023-11-20 14:49:45 685KB matlab
1
基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 运行环境Matlab2018b及以上。
基于ANFIS的时间序列预测(Matlab完整程序和数据) 基于ANFIS的时间序列预测(Matlab完整程序和数据
基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。
基于元胞自动机模拟和遗传算法改进的动态网络分配模型分析(Matlab完整程序和数据) 元胞自动机模拟,遗传算法改进,动态网络分配模型分析,Matlab完整程序和数据。 元胞自动机,遗传算法是很久之前就提出的模型,受碍于计算设备的局限,经过实践的证明,如今才应用于本领域也是非常有用的工具。 NaSch模型与NSGA—II算法结合,在对交通网络基于完善规则的模拟的情况下,应用恰当的算法可以对交通网进行一定程度的优化。
蜣螂优化算法(DBO)优化BP神经网络多输入单输出回归预测(Matlab完整程序和数据) 蜣螂优化算法(DBO),BP神经网络,多输入单输出回归预测。 蜣螂优化算法(DBO)优化BP神经网络多输入单输出回归预测(Matlab完整程序和数据
基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据
双车道元胞自动机交通流模型(Matlab完整程序和数据) 双车道元胞自动机交通流模型,具有靠右规则的 双车道元胞自动机交通流模型(Matlab完整程序和数据) 双车道元胞自动机交通流模型(Matlab完整程序和数据) 双车道元胞自动机交通流模型,具有靠右规则的