计算机组成原理静态随机存储器实验 计算机组成原理静态随机存储器实验是计算机组成原理教学实验的重要组成部分,本实验旨在让学生掌握静态随机存储器(SRAM)的工作特性和数据的读写方法。 实验设备: * TDN-CM++计算机组成原理教学实验系统一套 * 导线若干 实验原理: 实验所用的半导体静态存储器电路原理如图 1 所示,实验中的静态存储器由一片 6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。地址灯 ADO~AD7 与地址线相连,显示地址线内容。数据开关经三态门(74LS245)连至数据总线,分时给出地址和数据。 6116 有三个控制线:CE(片选线)、OE(读线)、WE(写线)。当片选有效(CE=0)时,OE=0 时进行读操作,WE=0 时进行写操作。本实验中将 OE 常接地,因此 6116 的引脚信号 WE=1 时进行读操作,WE=0 时进行写操作。在此情况下,要对存储器进行读操作,必须设置控制端 CE=0、WE=0,同时有 T3 脉冲到来,要对存储器进行写操作,必须设置控制端 CE=0、WE=1,同时有 T3 脉冲到来,其读写时间与 T3 脉冲宽度一致。 实验内容: 1. 向存储器中指定的地址单元输入数据,地址先输入 AR 寄存器,在地址灯上显示;再将数据送入总线后,存到指定的存储单元,数据在数据显示灯和数码显示管显示。 2. 从存储器中指定的地址单元读出数据,地址先输入 AR 寄存器,在地址灯显示;读出的数据送入总线,通过数据显示灯和数码显示管显示。 实验步骤: (1)将时序电路模块中的Φ和 H23 排针相连。将时序电路模块中的二进制开关“STOP”设置为“RUN”状态、“STEP”设置为"STEP"状态。 (2)按图 2 连接实验线路,仔细查线无误后接通电源。 (3)向存储器指定的地址送入数据,如:向 00 单元中输入 11,步骤如下: ① 向地址寄存器 AR 中输入地址 00 的流程如下: a. 设置:SW-B=1; b. 从输入开关输入 00000000; c. 打开输入三态门:SW-B=0; d. 将地址打入地址锁存器中:LDAR=1,按 START 发 T3脉冲。 ② 输入要存放的数据 11 的流程如下: a. 设置:SW-B=1; b. 从输入开关输入 00010001; c. 打开输入三态门:SW-B=0; d. 关闭地址寄存器:LDAR=0; e. 将数据写入存储单元:CE=0,WE=1,按 START 发 T3脉冲; f. 输入数据在数码管上显示:LED-B=0,发 W/R 脉冲。 ③ 按照①②的步骤继续向下面的几个地址中输入下述数据: 地址 数据 0112 0203 1304 0415 (4)从存储器指定的地址中读出数据,如从 00 中读出的流程如下: 1. 操作步骤是,设置:a. SW-B=1; b. 禁止存储器读写 CE=1; c. 从输入开关输入 00000000; d. 打开输入三态门:SW-B=0; e. 将地址打入地址锁存器中:LDAR=1,按 START 发 T3脉冲。 静态随机存储器(SRAM)是计算机组成原理教学实验的重要组成部分,本实验旨在让学生掌握静态随机存储器的工作特性和数据的读写方法。通过本实验,学生可以了解静态随机存储器的工作原理和读写过程,从而更好地掌握计算机组成原理的知识。
2025-11-09 10:02:51 80KB
1
COMSOL中的多孔介质模拟:利用MATLAB代码随机分布的二维三维球圆模型生成算法打包及功能详解,利用COMSOL与MATLAB代码实现的随机分布球-圆模型:二维三维多孔介质模拟程序包,COMSOL with MATLAB代码随机分布球 圆模型及代码。 包含二维三维,打包。 用于模拟多孔介质 二维COMSOL with MATLAB 接口代码 多孔介质生成 以及 互不相交小球生成程序 说明:本模型可以生成固定数目的互不相交的随机小球;也可以生成随机孔隙模型 一、若要生成固定数目的小球,则在修改小球个数count的同时,将n改为1 二、若要生成随机孔隙模型,则将count尽量调大,保证能生成足够多的小球 三维COMSOL with MATLAB代码:随机分布小球模型 功能: 1、本模型可以生成固定小球数量以及固定孔隙率的随机分布独立小球模型 2、小球半径服从正态分布,需要给定半径均值和标准差。 2、若要生成固定小球数量模型,则更改countsph,并将孔隙率n改为1 3、若要生成固定孔隙率模型,则更改孔隙率n,并将countsph改为一个极大值1e6. ,核心关键词: COMS
2025-11-04 20:20:35 3.4MB 数据结构
1
MATLAB中利用Comsol模拟生成三维随机多孔结构:孔隙率与孔洞大小范围的调控,MATLAB with comsol 生成三维随机多孔结构,调节孔隙率以及孔洞的大小范围 ,核心关键词:MATLAB; COMSOL; 生成三维随机多孔结构; 调节孔隙率; 孔洞大小范围。,MATLAB与COMSOL联合生成三维随机多孔结构:孔隙率与孔洞大小可调 在材料科学、化学工程以及地质学等多个领域,三维随机多孔结构的研究具有极其重要的意义。它们不仅可以模拟自然界中的多孔介质,如土壤、岩石等,同时也在合成材料领域如多孔膜、催化载体等中占据重要地位。然而,如何有效控制这些结构的孔隙率和孔洞大小范围,成为科研人员面临的一大挑战。幸运的是,借助计算机模拟技术,人们可以较为便捷地构建和分析这些复杂的三维多孔结构。 MATLAB是一种广泛使用的数学计算软件,它提供了强大的数值计算能力和便捷的编程环境。而COMSOL Multiphysics(简称COMSOL)是一个多物理场耦合模拟软件,它以有限元方法为基础,可以对各种物理现象进行仿真分析。当这两款软件联合使用时,可以构建更为复杂和精确的模型,实现对三维随机多孔结构的生成和参数调控。 通过MATLAB编写脚本,可以调用COMSOL软件中的相应模块,通过定义不同的物理场和边界条件,生成符合特定孔隙率和孔洞大小范围的三维多孔结构模型。这种模型的生成不仅仅局限于静态的结构展示,还可以进一步通过模拟各种物理过程,如流体流动、热传递、化学反应等,对多孔结构的性能和功能进行预测和分析。 孔隙率是描述多孔介质孔隙体积与总体积比值的物理量,它直接影响材料的渗透性、强度和导电性等特性。通过在MATLAB和COMSOL联合仿真中调节孔隙率,科研人员可以观察到这些宏观物理性质的变化,进而设计出更符合特定应用需求的材料。孔洞大小的范围也是多孔结构设计中的关键因素,它决定了材料的比表面积和可利用的反应区域,对催化效率、吸附容量等有决定性的影响。 在这项研究中,相关文件涵盖了从基础理论到技术分析,再到设计与调整的完整过程。如“与三维随机多孔结构生成与孔隙率.doc”和“与生成三维随机多孔结构的技术分析一引言在.doc”等文件,详细介绍了三维多孔结构生成的基础理论和原理,以及孔隙率调控技术的深入分析。“标题与联手打造三维随机多孔结构摘要本文将详细介绍如.html”和“与三维随机多孔结构设计与调整一引言在科.html”等文件则可能包含文章摘要和引言部分,为读者提供了研究的概览和背景信息。“生成三维随机多孔结构调节孔隙率.html”文件则可能重点讨论了如何在仿真模型中调节孔隙率,以及其对多孔结构性能的影响。 通过这些文件内容的深入研究和分析,科研人员可以更加精确地设计和优化三维随机多孔结构,使得材料研究和应用更加具有针对性和高效性。这项工作不仅对理论研究具有重要意义,也为实际工程应用提供了重要的技术支持。
2025-11-04 20:18:53 821KB
1
利用4个m序列进行相关运算,算出频偏 调制方式采用BPSK调制 用mse来检验 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
2025-11-03 10:37:41 2KB PN序列 伪随机序列
1
EMANE和CORE是两个重要的网络模拟工具,它们在研究和开发新网络协议、优化网络结构和测试网络性能方面发挥着关键作用。EMANE全称为Emulab Advanced Network Emulator,它是一个灵活的网络模拟平台,能够提供大规模和复杂的无线网络环境模拟。EMANE支持高级模拟功能,比如模拟多跳网络、移动节点以及各种网络设备的链路质量变化。在EMANE中,节点可以是移动的,模拟动态的无线网络拓扑变化,这使得研究人员能够在受控环境下研究移动网络的行为,例如移动传感器网络、车载网络或无人机(UAV)网络等。 节点随机移动场景是EMANE支持的一个特定场景,它允许研究者模拟节点在网络中以随机方式移动的情况。在这个场景中,节点的移动可以按照特定的移动模式来定义,例如随机游走、随机方向、随机速度等,这使得模拟结果更接近现实世界中设备的运动模式。节点的移动可以基于时间步长来更新位置,每个时间步长可以代表模拟中的时间流逝。 CORE是另一个网络模拟工具,它的全称为Controllable Environment for Research of Emulation and Networking,它提供了一个模块化的环境,能够对网络设备进行控制和配置。CORE的一个突出特性是可以创建虚拟网络拓扑,并且能够在这些虚拟网络中运行和测试各种网络协议和配置。结合EMANE使用时,CORE可以创建节点,并将其与EMANE的模拟环境关联起来,这样既能在CORE控制的虚拟环境中进行操作,同时也可以利用EMANE提供的高级仿真功能。 在节点随机移动场景下,研究者能够模拟出节点在移动过程中可能出现的各种网络状态变化,例如信号干扰、链路衰减、路径变化等。通过这种方式,研究者能够得到更为真实和动态的网络性能数据,从而进行更准确的网络分析。对于评估移动网络的路由协议、拥塞控制机制以及信号覆盖等研究工作来说,这样的模拟场景至关重要。 此外,EMANE和CORE的结合使用不仅仅限于移动节点的模拟,它们还可以用来测试特定网络设备的性能,分析网络协议在不同条件下的表现,以及在网络设计阶段预测网络行为。例如,可以模拟多种网络故障来测试网络的冗余性和自愈能力,或者模拟不同的网络流量模式来评估网络的吞吐量和延迟。这些模拟活动在物理世界中进行是不现实的,因为它们需要大量的时间、资源和空间,而使用EMANE/CORE可以大幅度降低成本。 EMANE和CORE的组合为研究者提供了一个强大的平台,使他们能够针对移动网络的复杂性和多变性进行更为精确的模拟和分析。这些工具的使用有助于推动无线通信技术的快速发展和优化,从而提高通信网络的整体性能。
2025-10-23 23:09:39 3KB CORE
1
针对当前政府和社会对空巢老人的识别缺乏有效技术手段的问题,提出了一种基于加权随机森林算法的空巢电力用户识别方法。首先通过调查问卷获取部分准确空巢用户标签,并从用电水平、用电波动、用电趋势 3 个方面构建用户用电特征库,由于空巢与非空巢存在用户数据不平衡问题,采用加权随机森林算法改善机器学习对数据敏感的现象,将该算法模型在电力公司采集系统部署上线,并对2 000户未知类型用户进行空巢识别,其空巢识别准确率达到 74.2%。结果表明,从用电角度研究对空巢老人的识别,可以帮助电网公司了解空巢老人的个性化、差异化需求,从而为用户提供更精细的服务,也可以协助政府和社会开展帮扶工作。
2025-10-18 20:49:41 593KB
1
《ASP.NET实现的抽签分组工具解析与应用》 在信息技术日新月异的今天,各种工具软件的开发已经成为日常工作中不可或缺的一部分。本篇文章将深入探讨一款基于ASP.NET技术开发的抽签分组工具,它能有效地进行人员随机分组和抽签,适用于各类活动的组织与管理。该工具由VS2010编程环境编译完成,具有简洁高效的特点,为用户提供了方便快捷的抓阄分组解决方案。 让我们了解一下ASP.NET这一强大的Web应用程序开发框架。ASP.NET是Microsoft .NET Framework的一部分,提供了一种模型驱动、事件驱动的编程模型,简化了Web应用程序的构建过程。开发者可以使用C#或VB.NET等语言编写代码,结合HTML、CSS和JavaScript,构建出高性能、安全性和可扩展性强的Web应用。 在抽签分组工具中,ASP.NET的核心功能得到了充分的体现。其一,用户界面的交互性。通过ASP.NET控件和AJAX技术,工具能够实时响应用户的操作,如输入人员名单、设置分组数量,以及执行抽签过程。用户可以直观地看到分组结果,无需刷新页面,提升了用户体验。 数据处理的灵活性。ASP.NET集成了ADO.NET,使得与数据库的交互变得简单。在这个抽签分组工具中,人员名单可能存储在数据库中,通过ADO.NET,我们可以方便地读取、更新和管理这些数据,实现动态分组。 再者,安全性考虑。ASP.NET提供了多种内置的安全机制,如身份验证、授权和加密服务,确保了工具在处理敏感数据(如参与者的个人信息)时的安全性。对于抽签结果的公正性,工具应有防止重复抽签的机制,确保每个人员都有平等的机会被抽中。 部署与扩展性。由于ASP.NET应用基于.NET Framework,它们可以轻松部署在Windows服务器上,并且可以利用IIS进行高效的管理。此外,工具的源码开放,开发者可以根据实际需求进行二次开发,增加如分组规则设置、结果导出等功能,增强工具的实用性。 这款基于ASP.NET的抽签分组工具凭借其便捷的操作、强大的数据处理能力和良好的扩展性,为组织者提供了一个理想的人员分配方案。无论是会议签到、比赛分组还是其他需要随机决定顺序或分组的场合,都能轻松应对。随着技术的不断进步,我们期待看到更多这样的实用工具出现在我们的日常工作中,让工作变得更加高效和有趣。
2025-10-14 23:36:52 183KB asp.net
1
利用MATLAB生成湍流随机相位屏的方法及其在激光传输中的应用。首先解释了相位屏的核心原理,即通过Kolmogorov谱模型描述大气湍流的折射率变化,并展示了关键的MATLAB代码片段用于生成符合特定功率谱的随机相位场。接着讨论了如何将涡旋光束(如携带轨道角动量的光)通过多层随机相位屏进行传播仿真,以及如何评估湍流导致的模态串扰效应。此外,还提到了海洋湍流与大气湍流之间的区别,并提供了优化计算性能的小技巧,比如使用GPU加速。 适合人群:从事光学仿真研究的专业人士,特别是关注激光传输和湍流效应的研究人员和技术开发者。 使用场景及目标:适用于需要模拟复杂环境(如大气或海洋)中激光传输行为的研究项目,帮助研究人员更好地理解和预测湍流对光束特性的影响。 其他说明:文中不仅分享了具体的编码实现细节,还指出了常见错误及解决方案,有助于初学者快速上手并避免陷阱。
2025-10-14 19:38:45 207KB MATLAB GPU加速
1
利用MATLAB生成湍流随机相位屏的方法及其在激光传输中的应用。首先解释了相位屏的核心原理,即通过Kolmogorov谱模型描述大气湍流的折射率变化,并展示了关键的MATLAB代码片段用于生成符合特定功率谱的随机相位场。接着讨论了如何将涡旋光束(如携带轨道角动量的光)通过多层随机相位屏进行传播仿真,以及如何评估湍流导致的模态串扰效应。此外,还提到了海洋湍流与大气湍流之间的区别,并提供了优化计算性能的小技巧,比如使用GPU加速。 适合人群:从事光学仿真研究的专业人士,特别是关注激光传输和湍流效应的研究人员和技术开发者。 使用场景及目标:适用于需要模拟复杂环境(如大气或海洋)中激光传输行为的研究项目,帮助研究人员更好地理解和预测湍流对光束特性的影响。 其他说明:文中不仅分享了具体的编码实现细节,还指出了常见错误及解决方案,有助于初学者快速上手并避免陷阱。
2025-10-14 19:37:31 207KB MATLAB GPU加速
1
随机信号处理领域,尤其是涉及到多普勒雷达信号处理的仿真研究,对信号的分析与处理能力要求极高。本报告以MATLAB为仿真工具,针对多普勒雷达信号处理进行了深入研究,提出了针对多普勒雷达信号处理的仿真要求与步骤,并对仿真结果进行了详细的分析与解释。本报告详细阐述了在特定参数设置下,如何通过MATLAB实现对多普勒雷达信号处理的仿真,并通过图形化的方式展现了信号处理的结果,以便于理解信号处理过程中可能出现的现象。 报告首先介绍了仿真任务的要求,包括脉冲雷达信号参数设定,如脉冲宽度、重复周期、载频、输入噪声等,并明确了目标回波输入信噪比和目标速度与距离的变化范围。在这样的参数设定下,对多普勒雷达信号进行仿真处理,需要关注以下几个核心内容: 1. 仿真矩形脉冲信号自相关函数,以理解信号在时间域上的相关特性。 2. 在单目标的情况下,给出回波视频表达式,并分析脉压和FFT(快速傅里叶变换)后的表达式。需要对雷达脉压后和MTD(移动目标显示)输出后的图形进行分析,通过仿真阐述FFT加窗抑制频谱泄露的效果,以及脉压输出和FFT输出的信噪比(SNR)、时宽和带宽是否与理论分析吻合。 3. 研究脉压时的多卜勒敏感现象和多卜勒容限,及其对性能的影响。例如,通过仿真探讨脉压主旁瓣比与多卜勒频率之间的关系。 4. 在双目标情况下,模拟大目标旁瓣掩盖小目标的情况,并分析距离分辨和速度分辨的情况。 在仿真过程中,本报告详细描述了回波信号的产生机制,包括如何利用多普勒频移和高斯白噪声生成回波信号,并通过匹配滤波器实现脉冲压缩。仿真还涉及到了信号的FFT处理,包括FFT后信号的时域与频域表达式,以及加窗技术对FFT结果的影响,特别是对旁瓣的抑制效果。 本报告还详细分析了脉冲压缩处理后信号的时宽、带宽和SNR增益,与理论值进行了对比。通过仿真,本报告展示了多普勒雷达信号处理中的距离分辨率和速度分辨率,阐述了距离模糊和速度模糊的问题,并探讨了多卜勒敏感现象和多卜勒容限对信号处理性能的影响。 本报告附有MATLAB源代码,方便读者了解整个仿真的实现过程,以及如何调整参数来满足不同的仿真要求。 本报告不仅对多普勒雷达信号处理的理论知识进行了深入的讨论,而且通过具体的仿真案例,详细阐述了MATLAB在雷达信号处理仿真中的应用。对于研究人员和工程师来说,本报告提供了一套完整的多普勒雷达信号处理仿真实验流程,并且通过图形化的方式,使得复杂的信号处理过程变得易于理解。
2025-10-14 10:10:25 33KB
1