2025电赛预测无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip 随着无线通信技术的迅速发展,无线网络的安全问题日益凸显。为了有效地保护网络安全,维护用户隐私,本研究聚焦于无线通信安全领域中的几个关键问题:信道状态信息分析、深度学习模型训练、击键行为识别与分类,以及基于WiFi信号的非接触式键盘输入监测系统。这些问题的研究与解决,对提升网络安全审计的准确性和隐私保护水平具有重要的现实意义。 信道状态信息(Channel State Information, CSI)是无线网络中不可或缺的一部分,它反映了无线信号在传播过程中的衰落特性。通过对CSI的深入分析,可以实现对无线信道状况的精确掌握,这对于无线通信的安全性至关重要。研究者利用这一特性,通过获取和分析无线信号的CSI信息,来检测和预防潜在的安全威胁。 深度学习模型训练在无线通信安全中起到了关键作用。基于深度学习的算法能够从海量的无线信号数据中学习并提取有用的特征,对于实现复杂的无线安全监测任务具有天然的优势。训练出的深度学习模型能够对无线环境中的各种异常行为进行有效识别,从而在源头上预防安全事件的发生。 击键行为识别与分类是本研究的另一个重点。通过分析无线信号与键盘输入活动之间的关系,研究者开发了基于WiFi信号的非接触式键盘输入监测系统。该系统能够通过分析无线信号的变化,识别出用户在键盘上的击键行为,并将其转换为可识别的文本信息。这不仅能够实现对键盘输入的实时监测,还能有效地防止键盘输入过程中的隐私泄露。 基于WiFi信号的非接触式键盘输入监测系统,为网络安全审计与隐私保护提供了新的途径。通过这一系统,安全审计人员可以对用户的键盘输入进行非侵入式的监测,从而对可能的安全威胁做出快速反应。同时,对于个人隐私保护而言,这一技术可以辅助用户及时发现并阻止未经授权的键盘监控行为,从而保障用户的隐私安全。 为了实现高精度的击键位识别,研究者开发了专门的击键特征提取算法。这些算法通过对WiFi信号变化的深入分析,能够有效地从信号中提取出与键盘击键活动相关的特征,进而实现对击键位置的高精度识别。这一成果不仅提高了无线监测系统的性能,也为相关的安全技术研究提供了新的思路。 本研究通过对无线通信安全问题的多角度探讨和技术创新,为网络安全审计与隐私保护提供了有力的工具和方法。其研究成果不仅能够提高无线网络安全的防护能力,还能够在保护个人隐私方面发挥重要作用,具有广阔的应用前景。
2025-10-11 11:54:30 7.59MB python
1
在IT领域,高精度定时器是许多应用的关键组成部分,特别是在实时系统、游戏开发、网络通信以及科学计算等场景。本文将深入探讨一个用于微秒级别定时的程序,它可以帮助开发者实现精确的时间控制。 我们要理解什么是高精度定时器。在计算机科学中,定时器是一种能够在一个指定时间间隔后触发某种事件或执行特定任务的机制。高精度定时器则是指那些可以提供毫秒、微秒甚至纳秒级分辨率的定时器,它们在需要精确时间同步和测量的场合非常有用。微秒定时器则进一步细化了这个概念,它的精度达到了百万分之一秒,这对于需要高度精确时间控制的应用来说至关重要。 这个名为"highTiMER"的程序可能包含以下关键组件和原理: 1. **计时器API**:程序可能使用了特定的操作系统提供的计时器API,例如在Windows系统中,可以使用QueryPerformanceCounter()函数获取高精度时间,而在Linux或Unix系统中,可以利用gettimeofday()或clock_gettime()函数。这些API提供了相对于系统启动时的高精度时间值。 2. **时间转换**:由于不同的API返回的时间值可能是以不同单位(如周期、纳秒、微秒等)表示,程序可能需要进行单位转换,确保所有计算和比较都是在相同的精度下进行。 3. **循环和延迟**:为了实现定时功能,程序可能会包含一个循环结构,通过检查当前时间与设定的定时时间点之间的差距来判断是否到达预定的微秒间隔。此外,可能会用到sleep()或nanosleep()函数来实现精确的延迟。 4. **误差补偿和同步**:由于系统负载、硬件延迟和其他因素,实际定时可能会出现偏差。高级的定时器程序可能会考虑这些因素,并进行误差补偿,以提高定时的准确性。 5. **事件处理**:程序可能有一个事件处理机制,当定时到达时,触发预定义的事件或回调函数。这可能涉及到多线程或异步编程,确保定时器触发的任务不会阻塞主线程。 6. **性能优化**:考虑到高精度定时器通常用于性能敏感的场景,程序可能进行了优化,以减少计时操作对系统性能的影响。 7. **跨平台兼容性**:为了在不同操作系统上运行,程序可能采用了条件编译或者抽象层来实现跨平台兼容,使得同一代码可以在多种环境下运行。 8. **测试与验证**:为了确保定时器的准确性,程序可能包含一系列测试用例,用来验证定时器在不同条件下的表现,包括不同时间间隔、系统负载等情况。 "highTiMER"这个程序很可能是一个实现了上述特性的高精度定时器,它可以满足开发者对微秒级别定时的需求。对于任何涉及精确时间控制的项目,这样的工具都是极其宝贵的。通过理解和运用其中的原理,我们可以更好地驾驭时间,实现更高效、更精确的系统运行。
2025-10-11 09:46:33 3.42MB
1
针对疫苗的运送及仓储过程中对环境温度的严格要求,设计了高精度的测温装置。选用了Pt100作为温度传感器,采用四线制测量方法去除了传输线上的干扰,设计了比例测量法使系统的精度仅依赖于一个高精度电阻。选用的ADS1248芯片内部包含了PGA放大器及24位ADC芯片,降低了装置的复杂性,同时具有较高的分辨率。经测试,本装置的测温精确达到0.1℃,能够满足疫苗的运送及仓储的要求。
2025-10-09 10:15:57 827KB 工程技术 论文
1
内容概要:本文详细介绍了PMSM(永磁同步电机)参数辨识程序的原理及其在CCS工程中的实现。文章首先解释了电阻和电感辨识的具体步骤,包括电压矢量配置、电流反馈、数据采集和滤波处理等关键环节。接着,展示了这些原理是如何在src_foc文件夹下的paraid.h文件中实现的,并指出该代码已在TI平台上成功编译运行,证明了其实用性和准确性。此外,文中提到src_foc和src_tool文件夹中包含的优秀FOC算法模块已实现完全解耦,便于移植到不同平台。最后强调了该程序的高辨识精度,并已在工程项目中得到验证。 适合人群:从事电机控制系统开发的技术人员,尤其是对PMSM参数辨识感兴趣的工程师。 使用场景及目标:适用于需要精确获取PMSM电机参数的项目,如工业自动化设备、电动汽车等领域。主要目标是提高电机控制系统的性能和效率。 其他说明:该程序不仅可以作为独立工具用于参数辨识,还可以与其他控制算法集成,进一步优化电机控制效果。
2025-09-26 00:20:50 768KB 电机控制 参数辨识 PMSM
1
提出一种标准CMOS工艺结构的低压、低功耗电压基准源,工作电压为5~10 V。利用饱和态MOS管的等效电阻特性,对PTAT基准电流进行动态电流反馈补偿,设计了一种输出电压为1.3 V的带隙基准电路。使输出基准电压温度系数在-25~+120℃范围的温度系数为7.427 ppm/℃,在27℃时电源电压抑制比达82 dB。该基准源的芯片版图面积为0.022 mm2,适用于低压差线性稳压器等领域。 《一种新型高精度CMOS带隙基准源的设计》 带隙基准源是模拟集成电路中的重要组成部分,它为系统提供一个稳定的电压参考,对于诸如数模转换器、模数转换器等电子设备的精度至关重要。本文章介绍了一种采用标准CMOS工艺的新型低压、低功耗电压基准源,其工作电压范围为5~10V,设计目标是实现1.3V的输出电压,同时具有优良的温度稳定性和电源电压抑制比。 该设计巧妙地利用了饱和态MOS管的等效电阻特性,对比例于绝对温度(PTAT)的基准电流进行动态电流反馈补偿。这一方法能够有效减少因温度变化导致的输出电压波动。在-25~+120℃的温度范围内,输出基准电压的温度系数仅为7.427 ppm/℃,意味着其对环境温度变化的敏感度极低,极大地提高了基准源的稳定性。 文章提到了在27℃时,电源电压抑制比高达82 dB,这表明该基准源对于电源电压的变化具有极高的免疫力,确保了在各种电源条件下的输出精度。此外,电路的芯片版图面积仅为0.022 mm2,这使得该设计非常适合在空间有限的低压差线性稳压器等应用场景中使用。 带隙基准源的基本原理在于通过组合正温度系数和负温度系数的电压,以抵消温度对输出电压的影响。负温度系数的电压主要来自双极晶体管的基极-发射极电压(VBE),而正温度系数的电压则通过不同电流密度下两个晶体管的基极-发射极电压差得到。通过精心设计,将这两部分电压加权相加,可以得到一个近似温度独立的基准电压。 文章提出的电路结构包含了带隙核心电路、反馈补偿电路和启动电路。带隙核心电路利用饱和状态MOS管复制基准电流,通过双极晶体管Q1和Q2的不同电流密度实现PTAT效应。反馈补偿电路则是对PTAT基准电流进行动态调整,以优化温度特性。启动电路则确保基准源在系统启动时能正确工作。 总体来说,该设计创新地利用CMOS工艺实现了高精度、低功耗的带隙基准源,优化了温度系数和电源电压抑制比,同时考虑了电路的小型化,为嵌入式系统和低电压应用提供了理想的解决方案。这一成果不仅提升了基准源的性能,也为未来集成电路设计提供了新的思路。
1
"基于ADS1274的可控式高精度数据采集系统" 本系统采用高性能DSP作为主控制器,动态控制A/D转换器的工作模式,增强了嵌入式系统的应用灵活性和通用性,使用户可以根据任务灵活选择A/D转换器的工作模式,以使系统工作在最佳的功耗和性能配比下。 系统的设计目标是实现对旋转机械信号进行多通道实时数据采集、预处理以及与上位机之间的数据传输等功能。该系统采用TMS320VC5502作为主控制器件,片上资源丰富,可提供全双工缓冲串口以及多路I/O接口。系统通过缓冲串口与A/D转换器通讯,并通过两路I/O接口实现对A/D转换器工作模式的控制。 ADS1274是一款高精度A/D转换器,具有24位精度,是一种宽动态范围的新型A/D转换器,可实现4通道同步数据采集。ADS1274具有62 kHz的带宽,最高采样频率可达128KS/s。主要特性包括:采用差动输入方式,所以输入端可直接与传感器或微小的电压信号相连;采用∑一△结构,具有宽泛的动态范围和24位无差错编码;采用低噪声增益可编程放大器(PGA),可扩展动态范围,提高分辨率;内部采用三阶数字滤波器,可滤除电源波纹和其他干扰;提供SPI或FRAME-SYNC接口;提供高速、高分辨率、低功耗和低速4种工作模式可以供用户选择;采用独立供电,+5 V模拟电源,1.8 V数字电源,1.8~3.3 V的I/O电源。 系统硬件设计中,TMS320VC5502与ADS1274的接口电路采用SPI或FRAME—SYNC接口,可以方便地实现与处理器的连接。信号调理模块通过运放OPA1632后将信号输入配置为差分输入方式。电源模块需要电源转换器设计电路,以保证系统正常工作。 ADS1274工作模式由于∑一△结构的A/D转换器由于采用过抽样理论,允许牺牲速度换取高精度或牺牲精度获取高采样频率,因此通过对过抽样率的调整来控制采样频率和采样精度,以满足不同信号的采样需求。ADS1274可提供高速、高分辨率、低功耗和低速4种工作模式可以供用户选择。 本系统基于ADS1274的可控式高精度数据采集系统可以满足多种信号采集需求,具有高精度、高速、高灵活性等特点,广泛应用于各种领域,如旋转机械信号采集、医疗、生物辨识、工业传感器等领域。 知识点: 1. 高性能DSP(TMS320VC5502)作为主控制器,增强了嵌入式系统的应用灵活性和通用性。 2. ADS1274是一款高精度A/D转换器,具有24位精度,最高采样频率可达128KS/s。 3. 系统硬件设计需要考虑信号调理模块、电源模块和接口电路的设计。 4. ADS1274工作模式可以通过对过抽样率的调整来控制采样频率和采样精度,以满足不同信号的采样需求。 5. 本系统可以满足多种信号采集需求,具有高精度、高速、高灵活性等特点,广泛应用于各种领域。
2025-09-23 12:13:57 161KB ADS1274 数据采集系统
1
基于Matlab的迁移学习技术用于滚动轴承故障诊断,振动信号转图像处理并高精度分类,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,关键词:Matlab; 迁移学习; 滚动轴承故障诊断; 振动信号转换; 二维尺度图; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 18:50:55 3.43MB kind
1
内容概要:SLAM2000是由深圳飞马机器人股份有限公司推出的一款手持激光扫描仪,旨在提供室内外短距离场景的高精度测量解决方案。该设备采用半球形非重复式扫描激光器,测距范围70m,点频200kHz,配备360°×59°的激光视场角和360°×360°的全景视场角,确保全方位数据采集。SLAM2000还搭载了1200万像素的视觉相机和赋色相机,分别用于提供匹配特征点和高清晰度纹理信息,以适应不同场景需求。此外,内置高精度惯导芯片和高性能计算芯片,可有效控制累计误差并实现实时建图。设备还配有512GB SSD存储、智能电池手柄和多种使用模式,如手持、静态站、背包等,适用于应急救援、实时测绘等多种场景。 适合人群:从事测绘、建筑、林业、交通等领域,需要高精度三维数据采集的专业技术人员或科研人员。 使用场景及目标:①适用于室内外建模、土方量测、大型构建物逆向、园艺林业等场景;②支持实时建图,适用于应急救援、实时测绘等要求成果时效性的应用场景;③提供高精度、高清晰度的点云数据,满足对精度和细节有较高要求的任务。 其他说明:SLAM2000不仅在硬件上具备多项创新设计,如模块化智能电池手柄、金属底座等,还在软件方面提供了PC端和移动端的数据处理工具,如SLAM GO POST和SLAM GO APP,进一步提升了用户体验和工作效率。设备已通过多项国家及国际认证,确保了其可靠性和安全性。
2025-09-14 15:52:19 19.89MB SLAM技术 激光扫描仪 三维数据采集
1
声源定位算法及代码实现:基于STM32F4的高精度声源定位技术与Matlab仿真,声源定位原理算法与STM32F4实现源码:高精度定位与Matlab仿真,2022声源定位相关资料及代码 内附声源定位算法基本原理及matlab仿真原理及实现方法; stm32f4实现源码(2022电赛) 3米处水平横向精度0.013m(可优化更低)。 视频5s,无快进,mcu为stm32f429zit6。 ,2022声源定位; 声源定位算法; MATLAB仿真; STM32F4实现源码; 精度0.013m; 视频5s; MCU STM32F429ZIT6,2022声源定位技术:原理、实现及STM32F4源代码详解
2025-09-12 22:28:05 507KB
1
### TRIOPTICS高精度光学测量系统概述 #### 一、公司背景介绍 TRIOPTICS GmbH成立于1991年,总部设于德国汉堡,是一家专注于光学检测仪器的研发、生产和销售的高新技术企业。经过二十多年的发展,TRIOPTICS已经成为全球领先的光学检测设备供应商之一。公司致力于开发高精度且具有自动化控制功能的光学检测设备,这些产品广泛应用于光学产业的各大企业以及科研机构,并逐渐确立为业界的标准。 #### 二、主要产品系列 TRIOPTICS的产品涵盖了广泛的光学检测领域,主要包括以下几大类产品: 1. **OptiSpheric** - 通用途光学测量系统(测焦仪):此系统能够进行非接触式的测量,如有效焦距(EFL)、后焦距(BFL)、前焦距(FFL)、轴上MTF、曲率半径等参数。测量范围广,从±5mm到500mm(可扩展至2000mm),并且具备极高的测量精度,例如在5-25mm范围内精度达到0.1-0.3%,重复精度可达0.03-0.2%。 2. **OptiCentric** - 中心偏差测量仪:该设备可以采用透射法或反射法对单镜片或多层镜片进行中心偏差的测量。 3. **OptiSurf** - 镜面定位仪(透镜中心厚度及空气间隔测量系统):用于测量透镜中心的厚度和空气间隔,适用于精确控制光学元件的结构尺寸。 4. **PrismMaster** - 精密测角仪:专门设计用于测量棱镜的角度精度。 5. **Spherometer** - 超级球径仪:用于高精度地测量球面的直径。 6. **ImageMaster Universal** - 科研级高精度传函仪:适合科学研究中的高级成像性能评估。 7. **ImageMaster HR** - 立式紧凑型传函仪:提供高效、紧凑的设计,适用于生产线上的快速检测。 8. **ImageMaster Pro** - 产线用快速传函仪:专为生产线上的高速检测而设计。 9. **SpectroMaster** - 折射率测量仪:用于精确测量材料的折射率。 10. **TriAngle** - 电子自准直仪:实现光学元件的高精度对准。 11. **WaveMaster** - 波前测量系统:用于测量光学系统的波前误差。 12. **AsperoMaster** - 非球面面形测量仪:针对非球面光学元件的高精度测量。 13. **OptiSurf300** - 纳米级高速表面轮廓测量仪:提供纳米级别的表面轮廓测量精度。 14. **µPhase®** - 泰曼-格林式相移干涉仪:基于泰曼-格林干涉原理的高精度相位测量设备。 15. **Optoliner CCD性能测试系统**:用于CCD传感器性能的全面评估。 #### 三、中国分公司——北京全欧光学检测仪器有限公司 北京全欧光学检测仪器有限公司(TRIOPTICS CHINA)作为德国TRIOPTICS GmbH在中国设立的分支机构,主要负责德国TRIOPTICS产品的销售和技术支持服务。除传函仪及折射率测量仪外,其他所有仪器的安装、培训及售后服务均由北京全欧光学负责。 #### 四、产品特点与应用 TRIOPTICS的产品以其高精度、自动化程度高、操作简便等特点受到广大用户的认可。它们被广泛应用于各种领域,包括但不限于: - **科研机构**:支持基础科学研究中的光学测量需求。 - **制造企业**:确保产品质量,提高生产效率。 - **教育机构**:用于教学实验,培养学生实践能力。 - **航空航天**:参与高端光学器件的研制与测试。 通过上述内容可以看出,TRIOPTICS不仅是一家专注于光学测量技术的企业,而且在全球范围内推动了光学领域的科技进步和发展。
2025-09-12 14:07:33 5.72MB
1