标题SpringBoot与微信小程序结合的宠物领养系统研究AI更换标题第1章引言介绍宠物领养系统的研究背景、意义、国内外现状以及论文的方法和创新点。1.1研究背景与意义阐述宠物领养系统在当前社会的重要性及开发意义。1.2国内外研究现状分析国内外宠物领养系统的研究进展和技术应用。1.3研究方法以及创新点介绍SpringBoot与微信小程序结合的研究方法及创新点。第2章相关理论总结SpringBoot和微信小程序开发的相关理论和技术基础。2.1SpringBoot框架概述介绍SpringBoot框架的特点、优势及应用场景。2.2微信小程序开发技术阐述微信小程序的开发流程、核心组件及API。2.3数据库技术介绍系统采用的数据库技术,如MySQL等。第3章系统设计详细描述宠物领养系统的设计方案,包括架构设计和功能模块设计。3.1系统架构设计给出系统的整体架构,包括前端、后端及数据库的交互。3.2功能模块设计详细介绍系统的各个功能模块,如用户管理、宠物信息管理等。3.3数据库设计阐述数据库的设计思路,包括表结构、字段设置及关系。第4章系统实现阐述宠物领养系统的实现过程,包括前端界面实现、后端服务实现及数据库操作。4.1前端界面实现介绍微信小程序前端界面的实现方法和技巧。4.2后端服务实现阐述SpringBoot后端服务的实现过程,包括API设计和业务逻辑处理。4.3数据库操作实现介绍数据库操作的具体实现,包括增删改查等。第5章系统测试与分析对宠物领养系统进行测试,分析系统的性能和稳定性。5.1测试环境与工具介绍测试所采用的环境和工具。5.2测试方法与步骤给出测试的具体方法和步骤,包括功能测试、性能测试等。5.3测试结果与分析对测试结果进行详细分析,评估系统的性能和稳定性。第6章结论与展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括SpringBoot与微信小程序结合的
2025-12-29 23:18:25 16.22MB springboot vue mysql java
1
Simulink仿真平台下基于模糊控制的改进型光伏MPPT扰动观察算法研究,Simulink仿真:基于扰动观察法的光伏MPPT改进算法 参考文献:基于扰动观察法的光伏MPPT改进算法+录制视频讲解 仿真平台:MATLAB Simulink 关键词:光伏;MPPT;扰动观察法;模糊控制 主要内容:针对 MPPT 算法中扰动观察法在稳态时容易在 MPP 点处震荡,以及步长固定后无法调整等缺点,提出一种算法的优化改进,将模糊控制器引入算法中,通过将计算得到的偏差电压作为第一个输入量,同时考虑到扰动观察法抗干扰能力弱,再增加一个反馈变量做为第二输入量来提高其稳定性.仿真分析表明,相比较传统的扰动观察法,在外部温度和光照强度发生变化时,改进的扰动观察法稳定性较好,追踪速率有所提高,同时需要的参数计算量少,能较好的追踪光伏最大功率。 ,基于扰动观察法的光伏MPPT改进算法; Simulink仿真; 模糊控制器; 光伏MPPT; 稳定性提升; 追踪速率提高; 参数计算量减少。,基于模糊控制的Simulink光伏MPPT改进算法研究视频解析
2025-12-27 13:11:12 169KB css3
1
随着数字化时代的到来,教育行业在技术应用上也发生了显著的变化。学生考勤系统作为学校日常管理中不可或缺的一部分,对于提高管理效率、确保学生安全具有重要意义。在鸿蒙操作系统(HarmonyOS)的背景下,开发的学生考勤系统不仅能够提供高效、便捷的考勤服务,还能够充分利用鸿蒙系统的优势,实现与其他鸿蒙设备和应用的无缝连接。 鸿蒙操作系统(HarmonyOS)是由华为开发的操作系统,旨在实现跨多种设备平台的智能协同。鸿蒙系统的微内核设计、分布式技术以及对IoT(物联网)的深度支持,使其在学生考勤系统中具有独特的应用价值。例如,微内核的设计提高了系统的安全性和稳定性,分布式技术使得考勤数据可以跨设备共享和处理,为学生和教师提供了便捷的考勤体验。 在项目源码方面,本次分享的“鸿蒙版APP-学生考勤系统-项目源码-API14”是一个完整的应用程序开发包,包含了构建学生考勤系统所需的所有源代码和相关资源文件。通过API14版本的源码,开发者可以了解和学习如何使用鸿蒙系统的开发接口来实现考勤功能,同时也能够通过源码来理解整个考勤系统的架构和运作机制。 此外,本项目还提供了详细的万字论文,从理论到实践全面解析了鸿蒙版学生考勤系统的构建过程。论文内容可能包括鸿蒙操作系统的特点、系统设计的理念、功能模块的实现方法、数据库设计、用户界面设计、网络通信设计等多个方面。通过阅读这篇论文,可以为对鸿蒙系统或学生考勤系统感兴趣的读者提供深入的技术分析和开发经验分享。 除了文字资料,项目还附带了PPT演示文件,这通常是用来展示项目核心功能和亮点的。通过PPT,用户可以更加直观地了解系统的优势和应用场景,同时PPT也可能是开发者进行项目汇报或教育推广时使用的演讲材料。 更为重要的是,本项目提供了完整的包部署方案和录制的讲解视频。包部署方案能够帮助开发者快速搭建起学生考勤系统环境,而视频材料则能够让开发者在遇到具体技术问题时,通过视频讲解直观地找到解决方案,从而极大降低了开发和部署的难度。 本次提供的鸿蒙版学生考勤系统项目源码,不仅仅是一个软件开发包,它还包含了一整套从理论学习、系统设计、功能实现到系统部署的完整解决方案。这对于鸿蒙系统的开发者和教育行业的技术人员来说,是一个宝贵的学习资源和实践案例。
2025-12-22 17:32:36 16.24MB
1
selenium+java实例,简单操作录制
2025-12-08 17:26:01 1KB seleniu
1
标题基于Python的外卖配送分析与可视化系统研究AI更换标题第1章引言介绍外卖配送分析与可视化系统的研究背景、意义、国内外研究现状、论文方法及创新点。1.1研究背景与意义阐述外卖行业快速发展下,配送分析与可视化系统的重要性。1.2国内外研究现状分析国内外在外卖配送分析与可视化方面的研究进展。1.3研究方法及创新点概述系统实现所采用的方法和本文的创新之处。第2章相关理论总结和评述与外卖配送分析及可视化系统相关的理论。2.1数据挖掘与分析理论介绍数据挖掘技术在外卖配送数据分析中的应用原理。2.2可视化技术理论阐述可视化技术在展示外卖配送数据中的作用和实现方法。2.3地理信息系统理论解释地理信息系统在外卖配送路线规划中的应用。第3章系统设计详细介绍外卖配送分析与可视化系统的设计方案。3.1系统架构设计给出系统的整体架构,包括输入输出、处理流程和模块功能。3.2数据库设计阐述数据库的设计思路,包括数据表结构和数据关系。3.3界面设计介绍系统的用户界面设计,包括操作流程和交互方式。第4章系统实现外卖配送分析与可视化系统的具体实现过程。4.1Python环境配置介绍系统开发所需的Python环境及相关库的安装和配置。4.2数据收集与预处理阐述外卖配送数据的收集方法和预处理流程。4.3分析与可视化功能实现详细介绍数据分析和可视化功能的实现代码和逻辑。第5章系统测试与优化对系统进行测试,评估性能,并根据测试结果进行优化。5.1系统测试方法介绍系统测试所采用的方法和测试用例设计。5.2测试结果分析分析系统测试结果,评估系统性能和稳定性。5.3系统优化策略根据测试结果提出系统优化策略,提升系统性能。第6章结论与展望总结研究成果,提出未来研究方向。6.1研究结论概括外卖配送分析与可视化系统的主要研究成果和创新点。6.2展望指出系统研究的不足之处以及未来可能的研究方向。
2025-11-21 18:08:17 14.96MB django python mysql vue
1
标题SpringBoot与Spark结合的西南天气数据分析与应用研究AI更换标题第1章引言阐述SpringBoot与Spark结合在西南天气数据分析中的研究背景、意义及国内外现状。1.1研究背景与意义介绍西南地区天气数据的特殊性及分析的重要性。1.2国内外研究现状概述国内外在天气数据分析与应用方面的研究进展。1.3研究方法与创新点介绍SpringBoot与Spark结合的方法,并说明研究的创新之处。第2章相关理论总结和评述SpringBoot、Spark及天气数据分析的相关理论。2.1SpringBoot框架理论介绍SpringBoot框架的特点、优势及在数据分析中的应用。2.2Spark计算框架理论阐述Spark的分布式计算原理、优势及在数据处理中的应用。2.3天气数据分析理论介绍天气数据分析的基本方法、常用模型及评价指标。第3章系统设计与实现详细描述基于SpringBoot与Spark的西南天气数据分析系统的设计方案和实现过程。3.1系统架构设计介绍系统的整体架构、模块划分及模块间交互方式。3.2数据采集与预处理阐述天气数据的采集方法、数据清洗及预处理流程。3.3数据分析模型构建介绍基于Spark的天气数据分析模型的构建过程及参数设置。3.4系统实现与部署系统的开发环境、实现细节及部署方式。第4章实验与分析对基于SpringBoot与Spark的西南天气数据分析系统进行实验验证和性能分析。4.1实验环境与数据集介绍实验所采用的环境、数据集及评估指标。4.2实验方法与步骤给出实验的具体方法和步骤,包括数据加载、模型训练和测试等。4.3实验结果与分析从准确性、效率等指标对实验结果进行详细分析,并对比其他方法。第5章应用与推广介绍系统在西南天气数据分析中的应用场景及推广价值。5.1应用场景分析分析系统在天气预报、灾害预警等方面的应用场景。5.2推广价值评估评估系统在其他地区或
2025-11-18 22:46:24 10.08MB springboot spark vue mysql
1
标题SpringBoot与Spark融合的西南天气数据分析研究AI更换标题第1章引言阐述SpringBoot结合Spark进行西南天气数据分析的研究背景、意义及现状,并介绍论文方法和创新点。1.1研究背景与意义分析西南地区天气数据分析的重要性及现有研究不足。1.2国内外研究现状综述国内外基于大数据技术的天气数据分析研究进展。1.3研究方法以及创新点简述SpringBoot与Spark结合的分析方法及论文创新点。第2章相关理论总结SpringBoot、Spark及天气数据分析相关理论,确立研究的理论基础。2.1SpringBoot框架理论介绍SpringBoot框架特点、优势及在数据分析中的应用。2.2Spark大数据处理理论阐述Spark核心概念、RDD及数据处理流程。2.3天气数据分析理论概述天气数据分析方法、模型及评估指标。第3章基于SpringBoot与Spark的西南天气数据分析系统设计详细介绍系统的架构设计、数据收集与处理方案。3.1系统架构设计系统总体架构、模块划分及交互方式。3.2数据收集方案介绍西南天气数据的来源、收集方法及预处理步骤。3.3数据处理流程阐述使用Spark进行天气数据处理的具体流程。第4章实验与分析呈现基于SpringBoot与Spark的西南天气数据分析实验结果,包括图表和文本解释。4.1实验环境与数据介绍实验所使用的软硬件环境及实验数据。4.2实验方法与步骤详细描述实验的具体方法和步骤,包括数据处理、模型训练等。4.3实验结果与分析通过图表和文本解释,分析实验结果,验证系统有效性。第5章系统应用与效果评估探讨系统在西南天气数据分析中的应用,并评估其效果。5.1系统应用场景介绍系统在西南地区天气预测、灾害预警等方面的应用。5.2效果评估方法阐述系统效果评估的指标和方法。5.3评估结果与分析分析系统应用效果,提出改进建议。第6章结论与展望总结
2025-11-18 22:46:06 10MB springboot vue mysql spark
1
标题基于SpringBoot+Vue的莱元元电商数据分析系统研究AI更换标题第1章引言介绍电商数据分析的重要性,SpringBoot+Vue技术在电商数据分析中的应用意义,以及论文的研究背景、目的和创新点。1.1研究背景与意义阐述电商行业数据分析的现状及发展趋势,以及SpringBoot+Vue技术的优势。1.2国内外研究现状概述国内外在电商数据分析系统方面的研究进展,以及SpringBoot+Vue技术的应用情况。1.3论文方法与创新点介绍论文的研究方法,包括技术选型、系统设计和实现等,并阐述创新点。第2章相关理论介绍SpringBoot、Vue及电商数据分析相关理论,为后续系统设计和实现提供理论基础。2.1SpringBoot框架概述介绍SpringBoot框架的特点、优势及核心组件。2.2Vue框架概述阐述Vue框架的基本原理、核心特性及组件化开发思想。2.3电商数据分析基础介绍电商数据分析的基本概念、常用方法和技术。第3章莱元元电商数据分析系统设计详细描述基于SpringBoot+Vue的莱元元电商数据分析系统的设计方案和实现过程。3.1系统架构设计给出系统的整体架构,包括前后端分离设计、数据交互方式等。3.2功能模块设计详细介绍系统的各个功能模块,如数据采集、数据处理、数据可视化等。3.3数据库设计阐述系统数据库的设计方案,包括数据表结构、关系等。第4章系统实现与关键技术介绍系统的具体实现过程,以及涉及的关键技术。4.1前端实现阐述Vue框架下前端页面的实现过程,包括组件开发、路由配置等。4.2后端实现介绍SpringBoot框架下后端服务的实现过程,包括接口设计、业务逻辑处理等。4.3关键技术分析分析系统实现过程中涉及的关键技术,如数据交互格式、安全性保障等。第5章系统测试与优化对莱元元电商数据分析系统进行测试,并针对测试结果进行优化。5.1测试环境与方案介绍系
2025-11-18 22:39:34 57.84MB springboot vue mysql java
1
标题SpringBoot基于ECharts的数据可视化电商系统研究AI更换标题第1章引言介绍研究背景、意义,国内外关于SpringBoot和ECharts在电商系统中的应用现状,以及论文的研究方法和创新点。1.1研究背景与意义分析电商系统数据可视化的重要性,以及SpringBoot和ECharts技术结合的优势。1.2国内外研究现状概述SpringBoot和ECharts在电商数据可视化领域的当前研究状况。1.3研究方法与创新点说明论文采用的研究方法,以及相比其他研究的创新之处。第2章相关理论阐述SpringBoot框架和ECharts数据可视化技术的基础理论。2.1SpringBoot框架概述介绍SpringBoot框架的基本概念、特点和核心组件。2.2ECharts技术原理解释ECharts数据可视化的技术原理、图表类型和交互特性。2.3SpringBoot与ECharts的结合探讨SpringBoot与ECharts技术结合的可行性和优势。第3章系统设计详细描述基于SpringBoot和ECharts的数据可视化电商系统的设计思路和实现方案。3.1系统架构设计给出系统的整体架构,包括前后端分离设计、数据库设计等。3.2数据可视化模块设计重点介绍数据可视化模块的设计,包括数据获取、处理、展示等流程。3.3系统安全性与可靠性设计阐述系统在安全性和可靠性方面的设计考虑和实现措施。第4章系统实现具体说明系统的实现过程,包括关键技术的实现细节。4.1SpringBoot框架的实现介绍如何使用SpringBoot框架搭建电商系统的后端服务。4.2ECharts数据可视化的实现详细阐述如何利用ECharts技术实现电商数据的可视化展示。4.3系统前后端交互的实现解释系统前后端如何通过API接口进行数据传输和交互。第5章系统测试与分析对实现的系统进行测试,并分析测试结果以验证系统的性
2025-11-18 22:36:40 61.64MB springboot vue java mysql
1
标题SpringBoot智能垃圾分类系统研究AI更换标题第1章引言介绍智能垃圾分类系统的研究背景、意义、现状以及论文的研究方法和创新点。1.1研究背景与意义阐述智能垃圾分类系统的重要性及其在现实中的应用价值。1.2国内外研究现状概述国内外在智能垃圾分类系统方面的研究进展及成果。1.3研究方法与创新点介绍本论文采用的研究方法以及创新点。第2章相关理论介绍SpringBoot框架和智能垃圾分类的相关理论和技术。2.1SpringBoot框架概述阐述SpringBoot框架的基本概念、特点和优势。2.2垃圾分类技术介绍传统的垃圾分类方法和智能垃圾分类技术的原理及应用。2.3机器学习算法在垃圾分类中的应用讨论机器学习算法在智能垃圾分类系统中的关键作用。第3章SpringBoot智能垃圾分类系统设计详细介绍基于SpringBoot的智能垃圾分类系统的设计方案和实现过程。3.1系统架构设计给出系统的整体架构,包括前端、后端和数据库等组件。3.2智能分类模块设计阐述智能分类模块的具体设计,包括图像识别、传感器数据采集等功能。3.3系统安全性设计讨论系统在安全性方面的设计和实现,如用户认证、数据加密等。第4章系统实现与测试介绍SpringBoot智能垃圾分类系统的具体实现过程以及测试方法和结果。4.1系统实现详细阐述系统的实现过程,包括关键代码和技术难点。4.2系统测试方法与步骤给出系统测试的具体方法和步骤,包括单元测试、集成测试和系统测试等。4.3测试结果与分析对测试结果进行详细分析,验证系统的功能和性能是否达到预期目标。第5章结论与展望总结SpringBoot智能垃圾分类系统的研究成果,并展望未来的研究方向和应用前景。5.1研究结论概括本论文的主要研究结论和创新点,以及系统在实际应用中的表现。5.2展望分析当前研究的局限性,提出未来可能的研究方向和改进措施。
2025-11-15 17:19:55 84.28MB springboot vue idea java
1