内容概要:本文详细介绍了基于XDMA的PCIE高速ADC数据采集系统的实现方法及其应用。系统主要由AD9226模数转换器、Xilinx Kintex-7 FPGA和PC上位机构成。AD9226以70MSPS采样率工作,数据通过DDR3缓存和XDMA引擎经PCIe x8通道传输到PC端QT界面,实测传输带宽达3.2GB/s以上。文中详细讲解了FPGA端的数据组装、跨时钟域处理以及上位机端的内存映射和波形显示等关键技术,并分享了调试过程中遇到的问题及解决方案。 适合人群:具备一定FPGA开发经验的工程师和技术爱好者。 使用场景及目标:适用于需要高带宽、低延迟数据采集的应用场景,如工业数据采集、医疗成像等领域。目标是实现高效稳定的高速数据采集和传输。 其他说明:文中提供了详细的代码片段和调试技巧,帮助读者更好地理解和实现该系统。同时,还分享了一些性能优化的方法,如调整AXI突发长度、使用双缓冲策略等。
2025-06-14 15:22:56 373KB
1
适合研究生FPGA课程-数据异步复接设计-设计报告
2025-06-13 15:59:16 455B fpga开发 课程资源
1
内容概要:本文深入探讨了ADS54J60高速采集卡的技术细节及其应用。该采集卡采用FMC标准,支持1G 16bit的数据传输率,具备4通道采集能力。文中详细介绍了其硬件架构,包括原理图、PCB设计和FPGA源码。重点讲解了高速ADC的应用,强调其高精度和快速数据采集能力。同时,解析了FPGA源码中的数据处理和控制系统逻辑。此外,文章还提到了该采集卡可以直接制板使用的优点,显著缩短开发周期并降低成本。 适合人群:电子工程技术人员、嵌入式系统开发者、硬件设计师、FPGA程序员。 使用场景及目标:适用于需要高性能数据采集的项目,如通信、医疗成像、工业自动化等领域。目标是帮助用户理解ADS54J60的工作原理,掌握其设计和应用方法,从而加速产品开发进程。 其他说明:文章不仅提供了详细的硬件和技术解析,还突出了该采集卡的实际应用价值和发展潜力。
2025-06-12 07:58:08 260KB
1
内容概要:本文详细介绍了基于FPGA的数字交通灯设计,涵盖硬件和软件两个方面。硬件部分以FPGA为核心控制器,负责生成和控制交通灯信号;软件部分涉及驱动程序、操作系统及用户交互界面。文中重点讲解了系统的模块化设计,包括信号生成模块、控制模块和电源模块的功能及其相互关系。此外,文章还探讨了用于提高交通灯控制实时性和准确性的先进控制算法,并展示了通过VHDL和Verilog实现的波形仿真结果,证明了设计的有效性和稳定性。最后,通过对实物运行的测试,进一步验证了系统的可靠性和扩展性。 适合人群:电子工程专业学生、FPGA开发者、交通控制系统研究人员。 使用场景及目标:适用于希望深入了解FPGA在交通控制系统应用的技术人员,目标是掌握基于FPGA的数字交通灯设计方法和技术细节。 其他说明:本文不仅提供了理论分析,还有具体的实现步骤和测试数据,有助于读者全面理解和实践相关技术。
2025-06-11 19:44:44 1.05MB
1
《动态扫描数字频率计的设计与实现》 在现代电子技术中,频率计是不可或缺的测试设备,用于测量信号的频率。本项目旨在设计一个8位十进制的数字频率计,利用FPGA(Field-Programmable Gate Array)技术进行硬件实现,并采用GW48系列或其他EDA(Electronic Design Automation)实验开发系统进行验证。拟选用的FPGA芯片为EP3C55F484C8,这是一款功能强大且可编程性强的器件,能够满足复杂逻辑设计的需求。 VHDL(Very High Speed Integrated Circuit Hardware Description Language)程序设计是实现这一项目的核心。VHDL是一种硬件描述语言,用于描述数字系统的结构和行为。DISPLAY.vhd.bak、CNT10.vhd.bak、REG32B.vhd.bak等文件是VHDL源代码,其中DISPLAY.vhd可能包含了显示部分的逻辑设计,用于将计算出的频率值以数字形式显示;CNT10.vhd可能是10进制计数器的实现,用于计数输入信号的周期;而REG32B.vhd可能是用于存储中间数据或状态的32位寄存器模块。 CLKGEN.vhd.bak文件可能包含时钟发生器的设计。在数字系统中,时钟是控制电路运行的关键,CLKGEN.vhd.bak中的设计可能包括主时钟的生成以及分频、倍频等操作,以适应不同频率的输入信号。 TESTCTL.vhd.bak可能包含了测试控制逻辑,用于控制整个系统的启动、停止、复位等功能,方便在验证和调试过程中切换不同的工作模式。 DTFREQ.vhd.bak是主设计文件,可能包含了整个数字频率计的核心算法和逻辑。DTFREQ.qpf、DTFREQ.qsf是Quartus II软件的项目配置文件,用于定义工程的设置,如器件选择、引脚分配、编译选项等。DTFREQ.qws则是工作区文件,记录了项目的开发环境和工作空间信息。 在项目实施过程中,程序仿真是一项重要的步骤。DTFREQ_nativelink_simulation.rpt很可能是仿真结果报告,通过仿真实验可以验证设计的功能是否正确,分析其性能指标,如响应速度、精度等。仿真结果将直接影响到硬件验证阶段的效果。 这个项目涵盖了FPGA设计的基本流程,从VHDL编程、逻辑设计、时钟管理到测试控制,再到仿真验证,每一个环节都是实现高效、准确的数字频率计的关键。通过这个项目,不仅可以深入理解FPGA的工作原理,还能提升EDA工具的使用技能,同时对于数字系统设计和信号处理的理解也将得到显著提升。
2025-06-11 18:47:34 2.69MB fpga
1
以FPGA 芯片为载体, 通过QuartusII 的LPM_ROM 模块和VHDL 语言为核心设计一个多功能信号发生器,根据输入信号的选择可以输出递增锯齿波、递减锯齿波、三角波、阶梯波和方波等5 种信号,通过QuartusII 软件进行波形仿真、定时分析,仿真正确后,利用实验板提供的资源,下载到芯片中实现预定功能。
2025-06-09 18:11:20 459KB FPGA 信号发生器
1
具体用法参考文章:GD(兆易创新)系列FLASH进行FPGA和ZYNQ配置固化相关操作 https://vuko-wxh.blog.csdn.net/article/details/130241849?spm=1001.2014.3001.5502
2025-06-09 18:03:58 1.55MB
1
内容概要:本文详细介绍了ADS54J60高速采集卡FMC子卡的设计与实现。该子卡支持4通道16位1G采样率,涵盖了硬件架构设计(原理图、PCB布局)、FPGA源码实现(Verilog代码)等方面。硬件方面,着重讨论了电源管理、时钟分配、信号完整性等问题;FPGA部分,则展示了ADC控制逻辑、数据同步及传输优化的具体实现方法。此外,文中还分享了许多实践经验,如电源纹波控制、LVDS接口配置、数据同步算法等,帮助开发者避免常见陷阱。 适合人群:从事高速数据采集系统的硬件工程师、FPGA开发人员、嵌入式系统设计师。 使用场景及目标:适用于需要高性能数据采集的应用场合,如通信系统、雷达信号处理等。目标是帮助读者掌握ADS54J60 FMC子卡的设计与实现,从而加速项目开发进程。 其他说明:文中提供的设计文件和代码可以直接用于制板生产,大大缩短了从设计到应用的时间。同时,作者还分享了一些实用技巧和经验教训,有助于提高系统的稳定性和性能。
2025-06-09 17:19:05 293KB
1
内容概要:本文详细介绍了基于TI ADS54J60的FMC HPC采集卡的设计与实现。该采集卡拥有4个通道,每个通道支持1Gsps采样率和16bit精度。文章涵盖了硬件设计的关键要素,如电源管理、PCB布局、时钟分配以及FPGA代码实现,尤其是针对SPI配置、JESD204B接口和数据缓存机制进行了深入探讨。此外,文中还提供了实际测试方法和优化技巧,确保系统的高性能和稳定性。 适合人群:从事高速信号采集系统设计的硬件工程师、FPGA开发者及相关领域的研究人员。 使用场景及目标:适用于需要高精度、多通道同步采集的应用场景,如雷达中频采集、通信设备测试等。目标是帮助读者掌握从硬件设计到软件实现的完整流程,提升系统性能和可靠性。 其他说明:文中提到的所有设计文件均已公开,便于读者复现和进一步改进。同时,作者分享了许多实战经验和常见问题解决方案,有助于减少开发过程中遇到的技术障碍。
2025-06-09 17:12:46 299KB
1
在Xilinx 7系列FPGA入门级图像处理中,我们主要关注的是如何利用FPGA进行图像处理,并通过HDMI接口实现图像的显示。这个过程涵盖了硬件接口设计、时序分析以及软件工具的使用等多个关键环节。 1. **HDMI简介**: HDMI(High-Definition Multimedia Interface)是一种数字视频/音频接口技术,用于在消费类电子设备之间传输未压缩的高清视频和多声道音频数据。在FPGA应用中,HDMI接口是将图像数据传输到显示器的关键。 2. **基于FPGA的HDMI接口设计**: 设计FPGA与HDMI接口的关键在于理解和实现HDMI协议,包括TMDS(Transition Minimized Differential Signaling)编码、TMDS通道的配置、以及必要的时钟和控制信号。在Xilinx 7系列FPGA中,通常会使用专用的IP核来处理这些复杂的协议细节。 3. **HDMI时序分析**: HDMI传输中的时序分析至关重要,因为它确保了数据正确无误地被接收。这涉及到像素时钟、数据有效时间、同步信号(如HS(Horizontal Sync)和VS(Vertical Sync))的精确控制,以保持与显示器的同步。 4. **720P和1080P HDMI显示**: - **720P HDMI显示**:720P是一种高清分辨率,表示1280x720像素,逐行扫描。在设计中,需要分析硬件电路,包括连接FPGA的HDMI发送器和接收器,以及设置正确的分辨率参数。工程文件设计包括创建适当的VHDL或Verilog代码,定义数据路径和控制逻辑,以及在Vivado中建立相应的工程。 - **1080P HDMI显示**:1080P是更高的分辨率,1920x1080像素,同样为逐行扫描。设计1080P HDMI显示需要更复杂的数据处理和更精细的时序控制,以确保高清晰度图像的无损传输。 5. **工程文件设计和Vivado使用**: 创建工程文件涉及选择正确的IP核,配置时序参数,以及编写用户自定义逻辑代码。在Vivado中,用户需要建立一个新的工程,导入必要的IP核,配置其属性,连接外部接口,最后综合和实现设计,生成比特流文件。 6. **实验结果**: 完成设计后,通过下载比特流文件到FPGA并连接到HDMI显示器,可以验证图像是否正确显示。如果一切顺利,应该能看到清晰的720P或1080P图像,没有偏色或其他显示问题。 这个过程对于初学者来说可能较为复杂,但通过逐步学习和实践,可以掌握FPGA在图像处理中的应用,为后续的高级图像算法实现打下坚实基础。在学习过程中,参考开源社区的资源和大神的指导是非常有价值的,它们能提供实践案例和解决问题的技巧。在使用Vivado 2017这样的现代开发工具时,理解其工作流程和界面将有助于提升设计效率。
2025-06-08 16:46:54 11.06MB 图像处理 fpga开发
1