内容概要:本文介绍了如何利用YOLOv8机器视觉算法实现实时车辆检测和跟踪,并将其结果实时联动到SUMO仿真器中生成仿真车辆的方法。首先,通过摄像头获取道路交通图像并用YOLOv8算法进行特征提取和目标检测,然后采用卡尔曼滤波等算法对车辆进行实时跟踪,最后将检测结果传输到SUMO仿真器中生成仿真车辆。实验结果显示,这种方法能有效提升智能交通系统的性能。 适合人群:从事智能交通系统研究的技术人员、研究人员和高校相关专业的学生。 使用场景及目标:适用于需要对车辆进行实时监控和模拟的城市交通管理项目,旨在提高交通流量管理和事故预防的能力。 其他说明:文中还讨论了未来可能的研究方向,如提高算法准确性、扩展应用场景等。
2025-11-20 15:43:54 150KB 机器视觉 车辆检测 实时跟踪
1
基于相平面法分析车辆稳定性:绘制相图、划分稳定域及实时调控资料整理,绘制相平面,相平面法找鞍点,划分稳定域。 可以根据不同工况调节速度、路面附着和前轮转角生成不同状态下的相平面图。 车辆行驶时通过查表法获得稳定边界系数,再实时判断车辆稳定性。 自己做完顺带整理的资料,资料包含绘制相平面以及划分稳定域的文件和详细说明 ,核心关键词:相平面绘制; 相平面法找鞍点; 稳定域划分; 工况调节速度; 路面附着; 前轮转角; 查表法; 车辆稳定性; 整理资料文件。,"相平面法在车辆稳定性控制中的应用:绘制、分析与稳定域划分"
2025-11-18 16:30:40 468KB gulp
1
基于多需求与冷链物流的车辆路径优化算法研究:融合遗传算法与多种智能优化技术,路径规划vrp,遗传算法车辆路径优化vrptw,MATLAB,带时间窗及其他各类需求均可,基于车辆的带时间窗的车辆路径优化VRPTW问题。 冷链物流车辆路径优化,考虑充电桩车辆路径evrp,多配送中心车辆路径优化,冷链物流车辆路径。 改进遗传算法车辆路径优化,蚁群算法粒子群算法,节约算法,模拟 火算法车辆路径优化。 完整代码注释 ,关键词: 1. 路径规划VRP 2. 遗传算法 3. 车辆路径优化VRPTW 4. MATLAB 5. 带时间窗 6. 各类需求 7. 冷链物流 8. 充电桩车辆路径evrp 9. 多配送中心 10. 改进遗传算法 11. 蚁群算法 12. 粒子群算法 13. 节约算法 14. 模拟退火算法 15. 完整代码注释 用分号分隔每个关键词为:路径规划VRP;遗传算法;车辆路径优化VRPTW;MATLAB;带时间窗;各类需求;冷链物流;充电桩车辆路径evrp;多配送中心;改进遗传算法;蚁群算法;粒子群算法;节约算法;模拟退火算法;完整代码注释;,基于多需求与冷链物流的车辆路径优化算法研究
2025-11-16 10:22:54 1.17MB csrf
1
内容概要:UN-R79法规旨在为道路车辆转向系统制定统一规定,涵盖传统机械转向系统和高级驾驶辅助转向系统(ADAS)。法规详细规定了转向系统的分类、性能要求、故障处理、认证流程及生产一致性要求。传统转向系统要求在转向操纵装置与转向轮之间保持可靠的机械连接,而新规允许采用无刚性机械连接的高级驾驶辅助转向系统,但仍需驾驶员保持对车辆的主导控制权。法规还特别强调了自动指令转向、校正转向、紧急转向等功能的具体要求,以及转向系统的故障处理机制和驾驶员干预机制。此外,法规明确了转向系统的测试方法和生产一致性核查流程,并对不同类别的车辆(如M、N、O类)提出了具体要求。 适用人群:汽车制造商、工程师、政策制定者、质量控制人员及相关行业从业者。 使用场景及目标:①确保车辆转向系统的可靠性与安全性,特别是在引入新技术的情况下;②为不同类型车辆(如乘用车、商用车)提供明确的转向系统设计和认证标准;③指导制造商进行转向系统的测试与生产一致性管理;④为政策制定者提供法规依据,以确保市场上的车辆符合安全标准。 其他说明:该法规不仅适用于传统转向系统,还涵盖了现代高级驾驶辅助系统,如车道保持、自动泊车
2025-11-12 14:02:31 909KB 自动驾驶技术 汽车工程
1
内容概要:本文档是德国标准DIN 70065的草案,规定了道路车辆中“线控转向(SbW)系统”的安全要求,适用于乘用车和轻型商用车。文档详细阐述了SbW系统的安全目标推导、系统可用性、首次故障下的可控性、故障后的运行行为(降级策略)等核心内容,明确了在发生故障时车辆应如何保持转向能力、可控性及安全状态。标准通过定义多种故障模式(如自行转向、转向能力失效、手力矩损失等)并结合驾驶操作测试(如直线行驶、蛇形绕桩、圆周行驶等)来评估系统的安全性,同时提出了降级状态(如受限行驶、蠕行、停车)和转换过程的具体要求,确保车辆在故障后能安全减速并最终停止。; 适合人群:从事汽车电子、智能驾驶、车辆安全系统研发的工程师、技术标准制定者、OEM主机厂及零部件供应商的技术人员。; 使用场景及目标:①为SbW系统的功能安全设计提供依据,确保符合ISO 26262等国际标准;②指导企业开展故障模式分析、可控性评估和降级策略验证;③支持整车企业在自动驾驶背景下构建安全可靠的转向系统架构。; 阅读建议:本标准为技术性规范文件,建议结合ISO 26262系列标准、车辆动力学知识及实际测试经验进行深入研读,重点关注故障模式矩阵、操作序列设计及验收标准,以便在产品开发中有效落地。
2025-11-12 11:18:54 2.72MB 汽车安全标准
1
LNS算法求解VRP问题的步骤: 1. 初始化 生成初始解:随机生成一个初始的车辆路径规划方案作为当前解。 2. 大邻域搜索(Destroy过程) 破坏当前解:从当前解中随机选择一部分元素(如客户点、配送点等)进行删除或重新排列,以破坏当前解的结构。破坏的程度和方式可以根据问题特性进行调整,以期在后续修复过程中获得更好的解。 生成候选解:通过破坏操作,生成多个候选解,这些候选解将作为修复过程的起点。 3. 小邻域搜索(Repair过程) 修复候选解:对每个候选解进行修复操作,以生成新的可行解。修复操作可能包括插入被删除的元素、调整元素的顺序等,目的是在保持解可行性的同时,尽量改善解的质量。 评估候选解:计算每个修复后的候选解的目标函数值(如总行驶距离、总成本等),以便后续的选择和更新。 4. 接受或拒绝新解 根据一定的策略(如贪婪策略、模拟退火等),从候选解中选择一个最优的解作为新的当前解。通常,选择目标函数值更优的解,但也可能允许一定程度上的劣化解以避免陷入局 5. 更新 更新当前解和相关参数,如车辆路径、行驶距离、成本等。 6. 判断终止条件,输出结果。
2025-10-29 09:01:43 7KB matlab
1
"基于遗传算法与蚁群算法的多配送中心车辆路径优化研究:可调整配送中心数目与车辆载重率的MATLAB代码实现",遗传算法多配送中心车辆路径优化,蚁群算法多配送中心车辆路径优化,多个配送中心,多中心配送mdvrptw.带时间窗的多配送中心车辆路径优化。 可修改配送中心数目。 多配送中心车辆路径 [1]多配送中心[2]带有车辆载重率的计算[3]matlab代码数据可及时修改。 ,遗传算法; 蚁群算法; 多配送中心; 车辆路径优化; 时间窗; 载重率计算; MATLAB代码。,多中心车辆路径优化:考虑时间窗与载重率计算
2025-10-28 17:59:08 1.08MB
1
自动驾驶控制技术:基于车辆运动学模型MPC跟踪仿真的研究与实践——Matlab与Simulink联合仿真应用解析,自动驾驶控制-基于车辆运动学模型MPC跟踪仿真 matlab和simulink联合仿真,基于车辆运动学模型的mpc跟踪圆形轨迹。 可以设置不同车辆起点。 包含圆,直线,双移线三条轨迹 ,核心关键词:自动驾驶控制;MPC跟踪仿真;基于车辆运动学模型;圆形轨迹;Matlab联合仿真;双移线轨迹。,"MATLAB与Simulink联合仿真:基于车辆运动学模型的MPC自动驾驶控制圆形轨迹跟踪"
2025-10-26 21:01:41 286KB
1
基于扩展卡尔曼滤波算法的车辆质量与道路坡度精准估计模型及Matlab Simulink实现,基于扩展卡尔曼滤波算法的车辆质量与道路坡度精确估计模型及应用研究,基于拓展卡尔曼滤波的车辆质量与道路坡度估计 车辆坡度与质量识别模型,基于扩展卡尔曼滤波,估计曲线与实际误差合理。 先用递归最小二乘法(RLS)质量识别,最后利用扩展卡尔曼坡度识别(EKF)。 附带对应文档21f 备Matlab simulink模型 2019以上版本 ,车辆质量估计;道路坡度估计;扩展卡尔曼滤波;递归最小二乘法;Matlab simulink模型,基于扩展卡尔曼滤波的车辆坡度与质量联合估计模型
2025-10-20 22:03:16 2.17MB 哈希算法
1
基于《车辆-轨道耦合动力学》的列车-钢弹簧浮置板-轨道耦合垂向时域Matlab程序设计与实现,基于《车辆-轨道耦合动力学》的列车-钢弹簧浮置板-轨道耦合垂向时域Matlab程序开发与应用,列车-钢弹簧浮置板-轨道耦合垂向时域程序 根据《车辆-轨道耦合动力学》编写 Matlab代码 注:仅代码,如需,需要有偿询问。 ,关键词:列车;钢弹簧浮置板;轨道耦合;垂向时域程序;《车辆-轨道耦合动力学》;Matlab代码;有偿询问。,列车轨道耦合垂向时域Matlab代码程序 在现代城市交通系统中,列车运行的稳定性和安全性是至关重要的。为了深入研究并优化列车与轨道之间的相互作用,专业技术人员依据《车辆-轨道耦合动力学》的理论基础,开发了列车-钢弹簧浮置板-轨道耦合垂向时域的Matlab程序。这一程序旨在模拟和分析列车在钢弹簧浮置板轨道系统上的动态行为,以便于工程师能够更好地理解和控制列车运行过程中的振动和稳定性问题。 钢弹簧浮置板轨道系统是一种先进的轨道结构设计,通过使用弹簧和浮置板来减少列车运行时产生的噪声和振动,从而提高乘坐舒适性和降低对周围环境的影响。在此系统中,列车与轨道之间的耦合作用非常复杂,需要借助专业的动力学模型和计算软件来进行分析。Matlab作为一种广泛应用于工程计算和仿真领域的软件,提供了一个强大的平台来实现这些复杂的动力学计算。 通过编写Matlab代码,研究者可以构建列车-钢弹簧浮置板-轨道耦合系统的垂向动力学模型,进而研究它们在不同运行条件下的动态响应。这包括对列车经过时轨道系统的动态变形、振动传播以及浮置板系统的隔振性能等方面的研究。这样的研究有助于设计更安全、更高效的轨道系统,同时也有助于制定更为合理的维护和检修策略。 此外,列车与轨道耦合动力学研究中的钢弹簧浮置板研究是一个重要的子领域。通过对浮置板系统的研究,可以深入理解其在减少振动和噪声方面的机理,并评估其在实际应用中的效果。由于涉及到复杂的物理现象和力学响应,此类研究通常需要借助数值仿真手段来进行。 在当前的城市交通系统中,采用钢弹簧浮置板轨道系统能够有效提高城市轨道交通的舒适性和安全性。然而,为了达到最佳的效果,需要不断进行研究和技术创新。Matlab程序的设计与实现为这一过程提供了强有力的工具,有助于工程师们在理论研究和实际工程中找到最佳的解决方案。 需要指出的是,上述Matlab代码程序是根据《车辆-轨道耦合动力学》的相关理论进行编写的。这是一门研究车辆、轨道以及它们之间相互作用的学科,它在轨道交通的设计、分析和运行中扮演着重要的角色。开发者们基于这些理论,将抽象的动力学方程转化为可以在计算机上执行的数值模型,从而实现了对列车运行状态的模拟和预测。这些研究成果可以为轨道交通系统的优化设计提供理论支持和实验数据。 列车-钢弹簧浮置板-轨道耦合垂向时域Matlab程序是城市轨道交通领域的一项重要技术成果。它的开发与应用对于提升列车运行的稳定性与安全性、优化轨道结构设计以及提高乘客舒适度都具有重要的意义。而这一切的实现,都离不开专业的《车辆-轨道耦合动力学》理论指导和先进的Matlab仿真技术的支撑。
2025-10-18 11:54:22 96KB
1