内容概要:本文详细介绍了一种利用MATLAB和递推最小二乘法(RLS)对锂离子电池二阶RC等效电路模型进行参数辨识的方法。首先介绍了数据读取步骤,包括从NASA官方获取电池数据并进行预处理。接着阐述了RLS的基本原理和实现过程,展示了如何通过不断更新参数估计值使模型输出与实际测量值之间的误差最小化。最后,通过实验验证了该方法的有效性和准确性,误差控制在3%以内,能够很好地反映电池的实际特性。 适合人群:从事电池管理系统(BMS)开发的研究人员和技术人员,尤其是对锂离子电池建模感兴趣的工程师。 使用场景及目标:①用于电池性能评估和优化;②提高电池管理系统的精度和可靠性;③为后续电池老化研究提供基础。 其他说明:文中提供了详细的MATLAB代码示例和一些实用的经验技巧,帮助读者更好地理解和应用这一方法。此外,还提到了一些常见的注意事项和可能遇到的问题,如电流正负号定义、初始SOC校准等。
2025-08-05 22:59:36 610KB
1
内容概要:本文详细介绍了一个基于改进蜣螂算法(MSADBO)优化卷积长短期记忆神经网络(CNN-LSTM)的多特征回归预测项目。项目旨在通过优化超参数选择,提高多特征回归问题的预测精度。主要内容包括:项目背景、目标与意义、挑战及解决方案、特点与创新、应用领域、模型架构及代码示例。项目通过MSADBO算法自动优化CNN-LSTM模型的超参数,解决了传统方法效率低、易陷入局部最优解等问题。此外,项目还探讨了如何通过数据预处理、特征提取、模型架构设计等手段,提高模型的计算效率、可解释性和适应性。; 适合人群:具备一定机器学习和深度学习基础,对优化算法和时间序列预测感兴趣的科研人员及工程师。; 使用场景及目标:①提高多特征回归问题的预测精度;②优化超参数选择,减少手动调参的工作量;③改进优化算法,提升全局搜索能力;④拓展应用领域,如金融预测、气候变化预测、能源管理等;⑤提高计算效率,减少模型训练时间;⑥增强模型的可解释性和适应性,提升实际应用中的表现。; 其他说明:此项目不仅注重理论研究,还特别考虑了实际应用的需求,力求使模型在真实场景中的表现更为优异。项目代码示例详细展示了从数据预处理到模型预测的完整流程,为读者提供了实践指导。
2025-08-05 21:52:42 44KB Python 超参数优化
1
五、设置模拟控制参数,生成数据文件,运行 点击按钮 进入前处理的模拟控制参数设置窗口。 将Simulation Title改为Square ring。 点击按钮Step,进行下列参数的设置: 点击按钮 生成数据文件,保存KEY文件,退出 前处理在DEFORM3D主窗口,开始运行Run。
2025-08-05 11:06:56 3.59MB DEFORM
1
基于二阶RC电池模型的在线参数辨识与实时验证研究——使用FFRLS算法及动态工况下的电芯性能评估,二阶RC电池模型参数在线辨识(BMS电池管理系统) 使用遗忘因子最小二乘法 FFRLS 对电池模型进行参数辨识,并利用辨识的参数进行端电压的实时验证,基于动态工况,电压误差不超过20mv,也可以用来与离线辨识做对比,效果见图 内容包含做电池Simulink模型、电芯数据、推导公式、参考lunwen 程序已经调试好,可直接运行,也可以替成自己的数据 ,二阶RC电池模型参数;在线辨识;BMS电池管理系统;遗忘因子最小二乘法(FFRLS);参数辨识;端电压实时验证;动态工况;电压误差;Simulink模型;电芯数据;推导公式;参考lunwen(文章);程序调试;数据替换。,基于FFRLS的二阶RC电池模型参数在线辨识与验证
2025-08-05 10:39:47 210KB 数据仓库
1
6.5 时序裕量测试 在 6.2节针对接口时序进行了讲解。在实际应用过程中,由于环境应力原因,DDR3时 序容易产生漂移,从而引发时序问题。最典型的就是数据线的建立保持时间偏移。 下面是常用的裕量测试方法: 6.5.1 窗口扫描 窗口扫描的目的跟示波器测量建立保持时间的目的是一样的。就是获取当前时序所在 的窗口位置,看是否时序向一边偏移了。但是窗口扫描的方法跟示波器测量不一样。 示波器测量是直接通过座标卡建立保持时间。而窗口扫描的方法则是通过修改寄存器, 调整 DQS/DQ、CK/AC的相位关系,得出误码时的相位,间接反应建立保持时间。 下面具体举例说明窗口测试的原理。比如,下图是 DDR3 初始化及训练后的 DQS/DQ 相 位。 图 6-42 DQ-DQS 初始时序 将 DQ 相位逐步前移,使 DDR3 接口出现误码,那么这个相移量就是初始化训练后的左 边窗口大小。 图 6-43 DQ-DQS 时序左边界 将 DQ 相位逐步后移,使 DDR3 接口出现误码,那么这个相移量就是初始化训练后的右 边窗口大小。
2025-08-04 14:06:15 5.67MB DDR3 基础与进阶 硬件设计 参数详解
1
在IT领域,有限元方法(Finite Element Method, FEM)是一种广泛应用的数值计算技术,用于求解各种工程和物理问题的偏微分方程。在C++编程环境中,实现参数化有限元网格划分是构建高效求解器的关键步骤。本文将深入探讨C++在这一过程中的应用,并结合"MeshMaker5.4-taucs"这一工具,讲解如何进行参数化网格划分。 让我们了解什么是参数化网格划分。参数化网格是指通过一组参数来定义几何模型,这样可以方便地对复杂几何形状进行建模和操作。在有限元分析中,这种网格可以有效地生成和修改网格,适应不同的计算需求。C++作为强大的系统级编程语言,提供了丰富的库和数据结构支持,使得创建、操作和优化这类网格成为可能。 C++中的参数化网格划分通常涉及以下几个关键步骤: 1. **几何模型建模**:使用参数化方法定义几何模型,例如通过贝塞尔曲线或NURBS(非均匀有理B样条)来描述复杂的曲面。C++库如OpenCASCADE或CGAL提供了高级的几何建模工具。 2. **网格生成**:将几何模型划分为小的单元(如四边形或六面体),这些单元构成了有限元网格。这通常需要算法如Delaunay三角剖分或Advancing Front方法。库如Triangle或Gmsh在C++中提供了这些功能。 3. **网格质量控制**:确保生成的网格单元具有良好的几何属性,如接近正交性和均匀的面积或体积,这对于数值求解的精度至关重要。C++库如tetgen提供了网格优化功能。 4. **数据结构**:设计合适的数据结构来存储和操作网格信息,如节点、边、面和元素。这可能包括自定义的结构体或类,或者使用已有的如Boost.Graph库。 5. **接口与求解器集成**:将生成的网格与有限元求解器接口,如TAUCS(The Algebraic Multigrid Toolkit for Constrained Systems),它是一个高性能线性系统求解器库,支持稀疏矩阵运算。 在"MeshMaker5.4-taucs"这个特定的工具中,我们看到它可能集成了网格生成和求解器的功能。MeshMaker可能提供图形用户界面,允许用户交互式地创建和编辑几何模型,然后自动生成有限元网格。而TAUCS则负责解决由此产生的线性系统,用于求解相关的偏微分方程。 为了利用C++实现参数化有限元网格划分,开发者需要掌握以下技能: - 基于C++的几何建模 - 网格生成与优化算法 - 数据结构设计与实现 - 高性能计算库的使用,如TAUCS - 数值线性代数基础 - 可能的图形用户界面设计和编程 C++参数化有限元网格划分是一项技术性强、涉及多方面知识的任务,需要结合合适的库和工具,以及深入的编程和数学理解。通过熟练掌握这些技术,开发者可以创建高效、灵活的有限元求解软件,应用于各种科学和工程计算场景。
2025-08-04 10:12:16 9.97MB 开发语言
1
内容概要:本文详细介绍了如何在Abaqus中构建调谐质量阻尼器(TMD)和惯容器的模型,以及如何通过Python脚本进行参数设置和优化。首先,文章解释了TMD的基本建模方法,包括使用Connector单元实现弹簧、质量块和阻尼器的组合。接着,讨论了如何利用丝杠螺距和飞轮转动惯量来模拟惯容器的惯容系数,并强调了运动耦合的重要性。此外,还探讨了飞轮转动惯量的精确设置,特别是在惯性主轴方向上的定义。对于动力学分析,推荐使用模态分析和显式动力学相结合的方法,并提供了调试技巧,如检查运动耦合、惯性矩方向和接触定义等。最后,文章展示了如何通过参数扫描优化TMD的阻尼比,以及如何处理惯容器与TMD结合使用时的质量优化。 适合人群:具备一定Abaqus使用经验和结构动力学基础知识的工程师和技术人员。 使用场景及目标:适用于需要进行结构振动控制仿真的场合,旨在帮助用户掌握TMD和惯容器的建模方法,优化参数设置,提高仿真精度。 其他说明:文中提供的Python脚本可以帮助用户快速搭建模型并进行参数调整,特别适合于涉及复杂机械系统和参数耦合的应用场景。
2025-07-31 15:12:39 580KB
1
I型NPC三电平逆变器 仿真 有三相逆变器参数设计,SVPWM,直流均压控制,双闭环控制说明文档(可加好友另算) SVPWM调制 中点电位平衡控制,LCL型滤波器 直流电压1200V,交流侧输出线电压有效值800V,波形标准,谐波含量低。 采用直流均压控制,中点电位平衡控制,直流侧支撑电容两端电压偏移在0.3V之内,性能优越。 参数均可自行调整,适用于所有参数条件下,可用于进一步开发 在当前电力电子技术的研究与应用中,三电平逆变器作为关键设备,其仿真技术对电能转换效率和电能质量的提升至关重要。特别是在I型NPC(Neutral Point Clamped,中点钳位)三电平逆变器的设计与仿真中,涉及多种控制策略和滤波技术,以实现高效的能量转换和优质的输出波形。 三相逆变器的参数设计是整个系统设计的基础。设计参数包括主电路的元件选择、拓扑结构配置以及控制系统的设计,这直接关系到逆变器的性能指标和稳定性。在此基础上,为了提高逆变器的输出特性,通常会采用空间矢量脉宽调制(SVPWM)技术。SVPWM技术能够有效减少开关频率,从而降低逆变器的开关损耗,提高效率,同时改善输出电压波形,减少谐波。 直流均压控制作为I型NPC三电平逆变器中的核心技术之一,其目的是在逆变器的直流侧实现电压平衡。由于逆变器在运行过程中可能会出现因电容充电和放电不一致导致直流侧电容电压偏差,这会直接影响逆变器的工作效率和输出波形的质量。因此,通过采用直流均压控制策略,可以确保直流侧支撑电容两端电压的均衡,从而提升逆变器的整体性能。 双闭环控制是指在逆变器控制系统中,同时采用电流内环和电压外环两种控制方式,以确保输出电压和电流的稳定性。电流内环主要用于快速响应负载变化,而电压外环则主要保证输出电压稳定在期望值。这种控制方式能够提高逆变器对负载变化的适应能力和输出波形的稳定度。 中点电位平衡控制是针对NPC型三电平逆变器的一个关键控制策略。在逆变器运行时,中点电位可能会由于开关动作或负载不平衡等原因发生偏移,进而影响逆变器的正常工作。通过实现有效的中点电位平衡控制,可以确保中点电位稳定,从而保障逆变器在各种工况下的稳定运行和输出性能。 滤波器的类型和设计对逆变器输出波形的质量也起着决定性作用。LCL型滤波器是一种三元件滤波器,由两个电感和一个电容组成。相比于传统LC滤波器,LCL型滤波器能更有效地抑制开关频率附近的谐波,减少电磁干扰,提高输出波形的质量。在I型NPC三电平逆变器中,合理设计LCL滤波器参数是实现低谐波含量输出波形的关键。 本套仿真文档提供了全面的仿真分析与性能优化方法。文档内容深入探讨了I型NPC三电平逆变器的设计原理和控制策略,同时给出了性能优化的具体方法。此外,文档还介绍了直流侧电压的设计参数和直流均压控制的实现方法,以及中点电位平衡控制的策略。这些内容不仅包括理论分析,还涵盖了实际仿真操作和参数调整方法,为逆变器的设计和优化提供了详实的参考资料。 此外,仿真文档中还包含了一系列图片文件,这些图片可能包含了仿真过程的可视化结果、系统结构示意图以及关键参数的设计图表等,为理解文档内容和逆变器设计提供了直观的参考。 I型NPC三电平逆变器的仿真不仅涉及复杂的电能转换原理和控制算法,还包括了对输出波形质量的精确控制和优化。通过仿真技术的应用,可以有效预测和改善实际应用中的性能表现,对于电力电子技术的发展和应用具有重要的实际意义。
2025-07-29 16:47:30 527KB
1
内容概要:本文详细介绍了BTT(Bank-to-Turn)和STT(Skid-to-Turn)两种导弹六自由度仿真的Simulink建模方法及其优化方案。文中涵盖了导弹的整体设计方案以及各个子系统的数学模型,如目标模型、导弹模型、导引头模型、导引规律模型、控制规律模型和舵机模型。特别强调了参数自定义、修改与二次优化的重要性,并提供了具体的代码实例,如导引头的二阶滞后环节和舵机的死区+饱和+速率限制模型。此外,还讨论了常见的错误和注意事项,如参数单位换算错误和耦合系数符号错误,并提出了自动化生成仿真报告的方法。 适合人群:航空航天工程领域的研究人员和技术人员,尤其是对导弹六自由度仿真感兴趣的工程师。 使用场景及目标:适用于需要进行导弹六自由度仿真的科研项目或教学活动。主要目标是帮助用户掌握Simulink环境下导弹仿真的建模技巧,提高仿真精度和效率。 其他说明:文中提供的模型和代码可以在GitHub上获取,便于用户进行实际操作和进一步优化。
2025-07-28 14:13:17 1.91MB Simulink 参数优化
1
Coord MG是一款专业的坐标变换软件,尤其擅长处理七参数解算问题。在GIS(地理信息系统)领域,坐标变换是至关重要的,因为不同的地理位置信息可能基于不同的坐标系统,这使得数据的集成和分析变得复杂。理解Coord MG及其核心功能,即七参数解算,对于理解和操作地理数据至关重要。 我们要了解坐标系统。全球主要的坐标系统有WGS84、CGCS2000、Pulkovo 1942等,它们基于不同的大地基准和参考椭球。在中国,通常使用的是CGCS2000和WGS84,两者之间存在一定的几何差异,这就需要进行坐标转换。 坐标变换通常涉及几个基本方法,其中包括三参数、四参数和七参数变换。其中,七参数变换是最为通用的一种,它包括三个平移参数(X、Y、Z方向的位移)、三个旋转参数(绕X、Y、Z轴的旋转角)和一个尺度参数(缩放因子)。这种变换能够处理复杂的地壳运动和不均匀变形,因此在大型项目或精度要求较高的情况下尤为适用。 Coord MG软件就是为了解决这类问题而设计的。用户可以输入不同坐标系统下的控制点对,软件通过最小二乘法进行拟合,从而求解出这七个参数。这些控制点通常来自于已知准确位置的地面标记或其他可靠地理参照物。解算过程完成后,用户就可以将任意一个坐标系统中的点转换到另一个坐标系统,实现数据的一致性。 软件的界面可能包含数据导入功能,允许用户导入含有坐标对的CSV或文本文件。此外,还可能有参数设置、结果可视化以及输出报告等功能。用户可以预览转换效果,查看转换前后的坐标对比,以评估变换的精度。 在实际应用中,Coord MG可能被广泛用于城市规划、测绘、导航系统、地质灾害监测等领域。例如,在建设大型基础设施如高速公路、桥梁时,需要将不同来源的数据整合在一起,这时就需要用到Coord MG进行坐标变换。在地震监测中,也需要对分布在不同坐标系统的传感器数据进行转换,以便统一分析。 Coord MG坐标变换软件通过七参数解算技术,解决了不同坐标系统间的数据转换难题,提高了地理信息的可用性和准确性。无论是专业GIS工作者还是相关领域的研究人员,掌握Coord MG的使用都能显著提升工作效率。
2025-07-27 17:35:31 975KB Coord
1