在电力行业中,数字孪生(Digital Twin)技术已经成为变电站管理和运维的重要工具。"变电站通用设备模型-800kV断路器-gltf格式-three.js模型-电力数字孪生"是一个针对800kV高压断路器的三维数字化模型,它结合了先进的图形技术和实际电力设备的物理特性和工作原理,为变电站的运行和维护提供直观、精确的可视化解决方案。 800kV断路器是电力系统中关键的设备之一,主要用于切断或闭合高压电路中的大电流,确保电网的安全稳定运行。这种高电压等级的断路器设计和运行需要高度的专业知识和技术,因为它们需要处理极高的电能,并且在故障情况下能够迅速动作,防止电力事故的发生。 gltf(GL Transmission Format)是一种高效、轻量级的3D模型格式,被广泛用于Web上的实时渲染和交互。与传统的3D模型格式如FBX或OBJ相比,gltf具有更小的文件大小和更快的加载速度,适合于网络传输和在线应用。在这个案例中,gltf格式的模型使得800kV断路器能够在Web浏览器上流畅地显示,无需用户下载大型文件,提升了用户体验。 three.js是一个基于WebGL的开源JavaScript库,用于在浏览器中创建三维图形。它提供了丰富的功能,包括场景管理、光照效果、动画处理等,使得开发者能够轻松地构建复杂的3D场景。在电力数字孪生领域,three.js能够帮助工程师们将变电站的设备模型以真实感的三维形式呈现,实现远程监控、故障模拟、预防性维护等功能。 通过这个800kV断路器的three.js模型,操作人员可以在电脑前就能观察到设备的详细结构,理解其工作状态,甚至进行故障预演。例如,可以通过动画模拟断路器的开断过程,分析潜在的问题,提前制定解决方案。此外,模型还可以集成传感器数据,实时反映设备的运行参数,帮助实时监控和诊断。 文件列表中的"1-7QF-T2-GIM01-800kV断路器模型01.bin"和"1-7QF-T2-GIM01-800kV断路器模型01.gltf"分别是断路器模型的二进制数据文件和gltf描述文件。bin文件通常包含模型的几何数据、纹理信息等,而gltf文件则包含了模型的结构信息,如材质、光照、动画等,两者结合使得模型在Web环境中能够完整地展现。 总结来说,"变电站通用设备模型-800kV断路器-gltf格式-three.js模型-电力数字孪生"项目利用了先进的3D建模技术,将800kV断路器的复杂结构和功能以直观、互动的方式呈现,为电力行业的数字化转型提供了有力支持。它不仅可以提升运维效率,减少现场作业的风险,还能通过模拟和预测,优化设备性能,确保电力系统的安全和可靠。
2025-11-10 17:34:09 125KB three.js gltf 3D可视化
1
在深入探讨激光雷达与3D成像技术之3D成像的专题中,首先应该了解3D成像技术是指通过一系列的技术手段和方法,捕捉和重建物体的三维信息,从而在二维的显示设备上复现三维立体场景的技术。本专题将分别从不同的技术实现方式入手,详细解析这些技术的原理、优势以及存在的劣势,以帮助读者对3D成像技术有一个全面的认识。 在3D成像技术中,最为人熟知且被广泛应用于多个领域的就是双目成像技术。双目技术是基于人类双眼立体视觉的原理,使用两个摄像头模拟人眼观察物体,利用视差原理计算出物体的深度信息。这种方法对于硬件设备的性能要求不高,市面上大量的通用摄像头都可以使用。不过,双目技术需要一个固定的物理基线来保证测量的准确性,这就要求双目摄像头之间的距离要符合一定的标准。此外,这种方法对环境光线的变化敏感,尤其在光线暗淡或者表面缺乏对比度时,测量的准确度会大大降低。由于双目技术需要精确的机械对准和校准,算法复杂,计算负荷大,这些都限制了它的应用范围。 结构光技术是另一种主要的3D成像方法,与双目技术相比,结构光技术在一定程度上克服了双目技术对于环境光线的依赖。结构光系统通常由一台相机和一个投影仪构成,利用投射的条纹光来计算物体表面的深度信息。结构光技术的一大优点在于它对相机帧率没有限制,可以实现无运动模糊的效果,并且对于多径干扰具有较强的抗干扰能力。然而,结构光技术也有其不足之处,比如需要高精度的相机和投影仪,对环境中的光学干涉或结构和纹理变化敏感,且如果投影仪和相机之间对准不准确,则可能需要进行重新校准。 激光三角测量技术也是3D成像领域中一个较为常见的方法,它的基本构成是2D相机、镜头和激光器。激光器发射的光斑投射到被测物上,然后相机通过捕捉反射光点来测量距离信息。激光三角测量技术可以实现高精度的测量,特别适合近距离测量场景。但是,它也有局限性,例如对于环境光变化敏感,且适用于扫描应用程序。 飞行时间(Time Of Flight, TOF)技术是一种能够直接测量每个像素深度和幅度的技术,它通过测量光源发射光脉冲与返回到图像传感器上的时间差来计算距离。TOF技术在室内环境中的表现较好,因为它可以在一定的环境光条件下工作。但是,TOF技术也存在一些固有的劣势,例如它需要主动光源同步,存在多径干扰,以及潜在的距离混叠问题。 脉冲型技术原理是通过两个不同持续时间的脉冲来计算反射信号的时间积分,根据积分结果反推脉冲激光的反射时间,从而计算出距离信息。这种方法计算原理简单,但需要激光作为光源,成本较高,并且对背景光抑制效果不佳。 TCSPC(Time-Correlated Single Photon Counting)技术则是另一种先进的3D成像技术,其系统主要包括单光子探测器(SPAD)和时间数字转换器(TDC)。TCSPC技术可以实现很远距离的测量,但相应地也需要较高的成本。 连续波技术是通过发射调制频率的连续波信号,然后计算反射信号和发射信号之间的相位差来得到距离信息的技术。这种方法可以应用于工业、农业、机器人导航等多个领域。 不同的3D成像技术各有其优势和局限性,适用于不同的场合和需求。在实际应用中,需要根据具体的需求和环境条件来选择最合适的3D成像技术。
2025-11-10 16:17:50 1.1MB
1
本文档是《嵌入式学习资料-h100硬件开发指南.pdf》的详细介绍,该指南主要聚焦于HM100类脑计算加速模组(以下简称HM100)的硬件设计,包括硬件原理图设计、PCB设计、单板热设计建议等内容。文档版本为1.7.0,发布日期为2022年6月6日。版权归属于北京灵汐科技有限公司,本指南详尽地提供了硬件设计方法,适用于灵汐技术支持工程师、渠道伙伴技术支持工程师及单板硬件开发工程师等特定人员。 在文档中,有明确的符号约定,用以提示不同的潜在危险级别,以及用于强调正文信息的附加内容。通用格式约定也得到清晰的定义,如宋体为正文,黑体为标题,楷体为警告提示等。表格内容约定部分则说明了如何处理文档中的空白单元格和用户可自行配置的部分。 修订记录部分详细记录了每次更新的内容,包括修订日期、版本号以及修订说明,以便用户追踪文档的变更历史。从2021年10月26日的V1.0.0版本首次发布以来,文档经历了多次更新,最近的更新是在2022年6月6日的V1.7.0版本,其中增加了散热设计的说明并移除了连接器参考资料。 文档的内容涵盖硬件原理图设计、PCB设计、单板热设计建议等方面。具体地,在PCB设计方面,指南提供了详细的设计方法和步骤。对于类脑计算加速模组的特殊应用,文档给出了关于PCIe接口的配置和优化建议,以及对散热设计的具体建议,确保模组在高性能运行时的稳定性和可靠性。此外,文档还包含了硬件开发过程中可能遇到的各种问题的解决方案。 为了保证产品的安全使用,文档中也包含了一个重要的安全声明部分。在使用HM100类脑计算加速模组之前,用户必须仔细阅读文档内的警示信息,确保安全、合理地使用产品,避免可能导致的数据丢失、元器件损坏、火灾、触电或其他伤害。此外,文档还强调了对本公司商业合同和条款的遵循,以及对文档内容的使用限制,即未经书面许可不得复制、修改或传播文档内容。 这份硬件开发指南是一份详尽且实用的参考资料,它不仅详细记录了硬件开发过程中的重要信息,还为开发者提供了安全使用指南,使其能安全且有效地进行HM100类脑计算加速模组的开发工作。
2025-11-08 15:19:12 1.12MB 嵌入式开发 PCB设计 类脑计算 PCIe接口
1
GTX1660 Ti 显卡作为NVIDIA发布的一款中端显卡,主要面向电竞玩家和主流用户。PCB(Printed Circuit Board)即印刷电路板,是显卡中至关重要的组成部分,负责承载和连接显卡上的各种电子元件。PCB图纸则是显卡制造和维修过程中的重要参考资料,它详细标注了电子元件的布局、电气连接以及尺寸等信息。在这个压缩包文件中,我们可以找到GTX1660 Ti显卡的PCB图纸,文件格式为cadence,这是一种广泛应用于电路设计的软件格式,能够帮助工程师准确地进行电路板设计和元件布局。 了解PCB图纸对于显卡维修和DIY玩家尤为重要。图纸上的每一个细节,包括电源管理、信号处理、存储管理等电路部分,都需要精确设计和布局,以确保显卡性能的稳定发挥。GTX1660 Ti作为NVIDIA图灵架构的产物,其PCB设计需要兼顾新架构的特点和性能要求。例如,图灵架构引入了光线追踪(RTX)和AI增强技术,这对PCB设计提出了更高的要求,包括对散热系统的设计以及对供电模块的优化。 此外,从文件名称“GTX1660TI_142-1G161-1000-A00.brd”中可以分析出一些信息。文件名中的“142”可能指的是具体的版本号或者设计序号,“1G161”可能表示显存的容量和类型,“1000”可能代表特定的频率或配置,“A00”则可能是图纸的修订版本。这些细节信息对于显卡的生产和售后技术支持至关重要。 在探讨显卡PCB图纸时,我们不得不提到其与显卡性能的关系。PCB设计的优劣直接影响到显卡的电气性能,包括信号传输的稳定性和速度。好的PCB设计可以减少信号损失,提高显卡的运行频率和效能,同时也能够更好地控制功耗和热量。此外,PCB图纸还涉及到显卡的尺寸和安装孔位,这对于整机的兼容性和安装便利性有着直接的影响。 GTX1660 Ti显卡PCB图纸的详细内容可能包括各个元件的位置分布图、走线图、元件表、丝印层、焊盘层等。这些图纸能够帮助工程师理解显卡的硬件结构和布局,对于进行故障排除、升级改造以及进行自主设计显卡都有着不可替代的作用。 对于显卡制造商而言,PCB图纸是其知识产权的重要组成部分。图纸中可能包含了厂商的专有技术和设计思路,因此在图纸的管理和使用上,制造商通常会采取严格的保密措施。而对于显卡用户和维修人员而言,获取这些图纸往往意味着能够更深入地了解显卡的工作原理,从而提升维修和使用的效率。 GTX1660 Ti显卡PCB图纸不仅是设计和制造过程中的关键资料,也是广大技术爱好者研究和实践的重要参考。通过详细分析和理解这些图纸,可以更好地掌握显卡的性能特点,为用户和制造商带来更多的价值。
2025-11-07 16:56:11 9.67MB 显卡图纸
1
2.4 GHz Wi-Fi (802.11b g n) + 蓝牙模组 内置 ESP32-S3 系列芯片,Xtensa 双核 32 位 LX7 处理器 Flash 最大可选 16 MB,PSRAM 最大可选 16 MB 最多 36 个 GPIO,丰富的外设 板载 PCB 天线或外部天线连接器 ESP32-S3-WROOM-1 和 ESP32-S3-WROOM-1U 是两款通用型 Wi-Fi + 低功耗蓝牙 MCU 模组,搭载 ESP32-S3系列芯片。除具有丰富的外设接口外,模组还拥有强大的神经网络运算能力和信号处理能力,适用于 AIoT 领域的多种应用场景,例如唤醒词检测和语音命令识别、人脸检测和识别、智能家居、智能家电、智能控制面板、智能扬声器等。 ESP32-S3-WROOM-1 采用 PCB 板载天线,ESP32-S3-WROOM-1U 采用连接器连接外部天线。两款模组均有多种型号可供选择,其中,ESP32-S3-WROOM-1-H4 和 ESP32-S3-WROOM-1U-H4 的工作环境温度为–40 ~ 105 °C
2025-11-06 18:11:55 421KB ESP32
1
项目介绍: 本项目利用 Three.js 和 Vue 构建了一个前端 3D 场景,通过 Three.js 实现逼真的 3D 渲染,用于展示智慧园区的监测设备,如:电力监测、水力监测等。 项目运行: cnpm install  安装所有依赖 npm run serve 启动项目 在当今的信息化时代,随着互联网技术的迅速发展,前端技术也在不断地进行创新和升级。Vue和Three.js作为当下前端开发领域里非常受欢迎的两个库,它们在构建复杂的3D场景和用户体验上发挥着巨大的作用。Vue是一个构建用户界面的渐进式框架,它通过响应式数据绑定和组合的视图组件,让开发者可以更快速地构建单页面应用。Three.js则是一个基于WebGL的库,它提供了一套简洁的API来创建和展示3D图形,使得开发者无需直接面对复杂的WebGL编程就能实现复杂的3D场景。 本文所介绍的项目“Vue +Three.js 智慧园区前端3D场景”,就是将Vue框架和Three.js库相结合,搭建出了一个能够逼真展示智慧园区监测设备运行情况的3D前端界面。智慧园区作为一种集成了众多先进技术的概念,涵盖了物联网、云计算、大数据分析等多种技术,其目的在于提升园区的管理效率和居住、工作在园区内人们的舒适度和便利性。该项目正是运用了这些技术的一个典型应用案例。 具体到实现上,Three.js为Vue应用提供了强大的3D图形渲染能力。开发者可以利用Three.js提供的功能,如场景(Scene)、相机(Camera)、渲染器(Renderer)等来创建一个3D环境,再通过加载模型、设置光照和材质等手法,构建出一个立体的智慧园区模型。在这个模型中,可以展示园区内的各种监测设备,例如电力监测、水力监测等,它们可以被设计成具有动态交互效果的3D模型,使得整个场景更加生动、直观。 在项目运行方面,开发者需要遵循一定的步骤来部署和启动该项目。通过cnpm install命令安装项目所需的所有依赖包,这些依赖包括但不限于Vue框架本身、Three.js库以及可能存在的其他如路由、状态管理、UI组件库等。安装完成后,通过npm run serve命令启动项目,这样就可以在本地服务器上预览该项目的实际运行效果。这种运行方式非常适合前端开发中的热更新特性,能够实时反映代码修改后的影响。 项目所用到的技术标签包括vue.js、javascript、前端、3d以及智慧园区。vue.js和javascript是构建整个项目的基础技术栈;前端指的是项目的应用场景,即构建的是一个面向用户界面的应用;3d是项目的核心特征,体现了项目在3D场景构建上的专业能力;智慧园区则指明了项目的行业应用场景,即面向智慧园区的3D展示。 这个项目在展示技术能力的同时,也体现了前端技术在智能城市、智慧园区等未来城市建设中的潜在应用。随着技术的不断进步和智能化解决方案的日益完善,类似的技术框架将会有更加广阔的应用前景,它能够帮助我们更好地管理和维护城市的各种基础设施,提升城市居民的生活品质。 Vue +Three.js 智慧园区前端3D场景项目不仅展示了如何利用现代前端技术构建一个3D场景,更重要的是,它为智慧园区管理提供了一个创新的展示平台,通过这种3D展示形式,我们可以更加直观和有效地理解园区内部的运作情况,为未来的智能化管理提供了一种可行的技术路径。
2025-11-04 17:00:34 35.33MB vue.js javascript 智慧园区
1
《UE4-逃生:利用虚幻引擎4构建3D益智游戏详解》 虚幻引擎4(Unreal Engine 4,简称UE4)是Epic Games公司开发的一款强大的游戏开发平台,广泛应用于制作高质量的3D游戏。"UE4-逃生"是一款基于此引擎打造的3D益智游戏,它以其独特的游戏机制和引人入胜的环境设计,挑战玩家的逻辑思维和解谜能力。玩家在游戏中需要通过解决一系列复杂谜题来寻找逃生之路,从而体验到一场沉浸式的游戏冒险。 游戏设计的关键在于谜题的设定。在"UE4-逃生"中,开发者可能运用了各种元素,如机关、密码锁、隐藏路径等,来设计出富有层次感的关卡。玩家需要观察环境,找出线索,甚至利用物理原理进行互动,以逐步解开谜题。这种设计不仅考验了玩家的智商,也增强了游戏的可玩性和趣味性。 虚幻引擎4的强大在于其图形渲染能力和实时编辑功能。通过UE4,开发者可以创建逼真的光照、阴影效果以及细腻的材质表现,营造出丰富而真实的3D环境。同时,UE4提供的蓝图系统使得非程序员也能通过可视化界面设计游戏逻辑,大大降低了游戏开发的门槛。 "UE4-逃生"还特别强调了音效在游戏氛围营造中的作用。开门和关门的声音,正如描述中提到的,可能是通过音效轨道精心制作的,它们不仅增强了游戏的沉浸感,还能为玩家提供关键的提示信息,帮助他们理解游戏状态,甚至在关键时刻制造紧张感。 在标签中,我们可以看到"game-dev"和"UnrealEngineC++",这表明"UE4-逃生"可能采用了C++进行底层开发,这种编程语言可以提供更高的性能和更灵活的控制。同时,"gamedev"标签则涵盖了整个游戏开发流程,包括策划、设计、编程、美术、测试等环节。 在"ue4-escape-master"这个压缩包文件中,可能包含了项目的所有源代码、资源文件、蓝图设置等内容,对于学习UE4游戏开发的人来说,这是一个宝贵的参考资料。通过研究这些内容,开发者可以了解到如何将UE4的功能与3D益智游戏的设计理念相结合,实现一个完整且引人入胜的游戏体验。 "UE4-逃生"是虚幻引擎4在3D益智游戏领域的一次精彩应用,它融合了丰富的视觉表现、精心设计的谜题和恰到好处的音效,展现了UE4在游戏开发领域的强大潜力。对于希望深入学习游戏开发或提升自己UE4技能的爱好者来说,这款作品无疑是一个值得研究的范例。
2025-10-30 11:18:00 51.17MB game gamedev puzzle game-development
1
印制电路板(PCB)设计与制造遵循一系列标准,以确保产品的可靠性和一致性。以下是一些关键的IPC(国际电子工业联接协会)标准的详细介绍: 20) IPC-SC-60A:该标准关注焊接后溶剂清洗的过程,涵盖了自动和手工焊接中的清洗技术,讨论溶剂特性、残留物影响以及过程控制和环保要求。 21) IPC-9201:涉及表面绝缘电阻(SIR)的手册,提供了SIR的定义、理论、测试方法和环境因素,如温度和湿度对SIR的影响,以及故障分析和对策。 22) IPC-DRM-53:是一个关于通孔安装和表面贴装技术的桌面参考手册,包含图示和照片,帮助理解各种组装技术。 23) IPC-M-103:表面贴装装配手册,整合了与表面贴装相关的21个IPC文件,提供全面的表面贴装技术指导。 24) IPC-M-I04:印刷电路板组装手册,涵盖10个最常用的文件,指导组装过程和相关技术。 25) IPC-CC-830B:针对电子绝缘化合物的标准,定义了在PCB组装中使用的涂敷材料的质量和资格要求。 26) IPC-S-816:表面贴装技术工艺指南,列出并解决了表面贴装组装中的常见问题,如短路、遗漏焊点、元件定位不准确等问题的解决方案。 27) IPC-CM-770D:印制电路板元器件安装指南,提供了元件准备和组装的详细步骤,包括手工和自动组装、表面贴装和倒装芯片技术,以及后续焊接、清洗和涂敷工艺的考虑。 28) IPC-7129:定义了计算DPMO(每百万机会发生故障数目)的方法,为质量控制和缺陷率的行业基准设定标准。 29) IPC-9261:印制电路板组装产量估算和DPMO计算,提供了评估组装过程不同阶段性能的工具。 30) IPC-D-279:表面贴装技术的可靠性设计指南,涵盖了适用于表面贴装和混合技术的PCB的制造过程和设计理念。 31) IPC-2546:阐述了在PCB组装中传递物料的要求,如传送系统、手工和自动化操作,以及各种焊接工艺。 32) IPC-PE-740A:印制电路板制造和组装的故障排除指南,提供了设计、制造、装配和测试过程中问题的案例和纠正措施。 33) IPC-6010:是印制电路板质量标准和性能规范的系列手册,定义了PCB行业的质量标准。 34) IPC-6018A:专注于微波成品印制电路板的检验和测试,规定了高频和微波PCB的性能要求。 35) IPC-D-317A:高速技术电子封装设计指南,涵盖了高速电路设计的机械、电气考量和性能测试方法。 这些标准确保了PCB设计和制造的标准化,从而提高产品的质量和可靠性,同时降低生产过程中的问题和风险,是硬件设计工程师不可或缺的参考资料。理解和遵循这些标准能够提升PCB的性能,确保其在各种应用中的稳定性和耐用性。
1
可靠性是三维NAND闪存(3D NAND Flash)记忆体技术发展中最重要的挑战之一。随着市场对数据存储密度增长的需求,而对存储介质的面积增长需求却保持不变,这就要求内存设备的存储容量在不增加面积占用的前提下持续增长。为此,提高内存密度和缩小存储单元尺寸变得势在必行。 在传统的二维(2D)NAND闪存技术向三维(3D)架构转变的过程中,以电荷陷阱(Charge Trap, CT)技术为基础的NAND存储单元被认为是最具发展前景的技术之一,因为它比浮栅(Floating Gate, FG)技术有更好的可扩展性。尽管CT存储单元在理论上显示出了高度的潜力,但是这种技术也存在若干可靠性问题。并且,从2D到3D的过渡改变了已知的可靠性问题的影响,并产生了新的问题。 在三维NAND闪存的研究领域中,主要的可靠性机制被广泛研究。其中包括从基本的可靠性问题开始,涉及影响NAND闪存的物理和架构方面的因素。为了保证信息存储的正确性和稳定性,NAND技术必须确保即使在经过大量写操作并且长时间存储后,存储的信息依然能够保持不变。 本章将围绕影响三维NAND闪存的可靠性机制进行探讨,提供了3DFG和3DCT设备在可靠性和预期性能方面的比较。通过分析基本的可靠性问题,包括物理和架构方面的问题,将具体讨论影响2D记忆体和CTNAND存储单元可靠性的物理机制。此外,文章将回顾实验中发现的主要问题。 为了应对这些挑战,研究人员提出了新的三维垂直FG型NAND存储单元阵列。这类新设计的阵列具有前景看好的性能表现,并有助于克服三维NAND闪存在可靠性方面的问题。 上述内容中,还提到了文章作者A. Grossi, C. Zambelli和P. Olivo,他们在意大利费拉拉大学的工程系工作,并分别通过电子邮件联系。此外,本书名为《3D闪存》,由Springer Science+Business Media出版,并且在本章中,将深入分析影响三维NAND闪存记忆体的主要可靠性问题,以及基于这些分析,如何通过比较不同技术(如3DFG和3DCT)来预期未来的性能表现。这些内容无疑为理解三维NAND闪存技术的可靠性问题提供了丰富的理论基础和实践经验。
2025-10-29 18:03:47 1.73MB
1
PCB LAYOUT CHECK LSIT,用于检测PCB布局走线,以及gerber输出的检查。
2025-10-29 15:26:35 19KB
1