模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。购买后,提供数据集及相关程序,只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-18 17:39:57 501.29MB 深度学习
1
用AI开发软件:FTP管理工具(附完整代码)
2025-05-13 18:22:42 9.92MB 人工智能
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-10 20:35:31 411.94MB 深度学习
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-07 11:25:43 701.91MB
1
文本相似性计算是自然语言处理领域的一个重要任务,它涉及到如何衡量两个或多个文本之间的相似程度。这个压缩包“文本相似性计算 完整代码数据.rar”提供了相关的代码和数据,便于我们深入理解和实践这一技术。以下是根据提供的文件名解析出的相关知识点: 1. **文本相似度计算**: 这个项目的焦点在于计算两个文本(如“MB.txt”和“案例库.txt”中的句子)之间的相似度。这通常涉及到词向量表示(如Word2Vec、GloVe)、余弦相似度、Jaccard相似度等方法,或者更复杂的模型如BERT等。 2. **Python编程**: “.py”文件表明项目使用Python编程语言,这是一种广泛用于数据科学和机器学习的编程语言,拥有丰富的库支持自然语言处理任务。 3. **主要执行文件**:“main.py”可能是整个项目的入口文件,负责调用其他模块并执行文本相似性计算的主要逻辑。 4. **知识库与案例库**: “知识库.txt”和“案例库.txt”可能包含了特定领域的语料库或已知信息,用于对比和计算相似度。而“知识库.xlsx”和“案例库.xlsx”可能是这些数据的Excel版本,方便数据管理和分析。 5. **预训练模型**: “chinese-bert-wwm-ext”可能是指预训练的BERT模型,全名为“Chinese Whole Word Masking”,是针对中文优化的版本,能更好地处理中文的词组问题,常用于NLP任务如文本分类、问答系统和文本相似性计算。 6. **IDE配置文件**:“.idea”目录是IntelliJ IDEA这种集成开发环境的项目配置文件,包含了项目结构、设置等信息,有助于开发者复现和调试代码环境。 7. **MB.txt**:可能包含一组特定的句子或问题,用于与“案例库.txt”中的句子进行比较,评估相似性。 通过以上分析,我们可以推测该项目可能涉及使用预训练的BERT模型(如chinese-bert-wwm-ext),配合Python编写的主要程序(main.py),计算“MB.txt”和“案例库.txt”中句子的相似度,并可能使用到“知识库.txt”和“案例库.xlsx”中的信息作为参考或对比。在实际操作中,开发者可以调整参数、改变输入数据,以适应不同的文本相似性计算需求。
2025-05-06 10:49:46 366.01MB
1
在振动分析和故障诊断领域中,阶次分析是一种重要的信号处理技术,它能够帮助工程师和研究人员识别和分析旋转机械中各种频率成分的振动特性。使用MATLAB来实现阶次分析,可以让这一过程变得更加便捷和高效。MATLAB是一种高性能的数值计算环境和第四代编程语言,广泛应用于工程计算、数据分析、算法开发等诸多领域。 阶次分析的核心思想是将旋转机械随时间变化的信号转换成随旋转角度变化的信号,进而可以分析不同旋转速度下的振动特性。通过这种方式,可以将机械部件的故障特征频率与其他频率成分区分开来,以便更准确地进行故障诊断。MATLAB强大的信号处理工具箱提供了一系列函数和工具,使得在MATLAB环境下进行阶次分析变得简单直接。 在MATLAB中实现阶次分析通常会涉及到以下几个步骤:首先是信号的采集,这通常需要使用相应的传感器和数据采集硬件。然后是信号的预处理,这可能包括滤波、去噪等操作,目的是为了提取出更清晰的振动信号。接下来是进行阶次转换,即将时间信号转换为阶次信号,这可以通过阶次跟踪技术实现。完成阶次转换后,分析人员便可以对阶次信号进行频谱分析,识别出机械中的不同频率成分,尤其是关注那些对应于旋转机械故障特征的频率。 从给定的压缩包文件内容来看,其中包含了阶次分析的图形说明文件“阶次分析.jpg”,这可能是对阶次分析概念或过程的视觉展示。另外两个文件“ORDER_Test2.m”和“C-A-2.mat”则更直接地关联到MATLAB的代码实现和数据处理。 “ORDER_Test2.m”很可能是一个MATLAB脚本或函数文件,它包含了阶次分析的算法实现。在MATLAB中,脚本和函数文件通常以“.m”作为扩展名,而“ORDER_Test2”暗示了这是一个关于阶次分析的测试版本。文件内容可能包括了数据的导入、信号处理、阶次转换和结果展示等部分。 “C-A-2.mat”是一个MATLAB数据文件,其扩展名为“.mat”,这表明文件中存储的是以MATLAB矩阵格式保存的数据。这些数据可能是在阶次分析前进行的数据采集或预处理的结果,也可能是阶次转换后的数据,或者是经过分析得到的频谱数据。 通过MATLAB实现阶次分析不仅能够为工程师和研究人员提供一种强大的工具,而且由于MATLAB的易用性和强大的数据处理能力,它还大大简化了分析过程,提高了工作效率。无论是初学者还是经验丰富的专家,MATLAB提供的这一套完整的阶次分析工具和资源都能满足不同层次的需求。
2025-04-17 16:19:12 13.72MB matlab 振动分析
1
YOLOv8-obb旋转框目标检测技术结合了YOLO(You Only Look Once)模型和旋转边界框(Oriented Bounding Box, OBB)检测算法,是一种用于图像中物体检测的先进方法。它能够识别和定位图像中的目标,并为每个目标绘制一个旋转的边界框,以此来更准确地描述目标在图像中的位置和姿态。 在本项目中,开发者提供了基于YOLOv8架构的旋转框目标检测模型,并通过ONNX Runtime实现高效部署。ONNX Runtime是微软开发的一个跨平台机器学习运行时引擎,支持ONNX(Open Neural Network Exchange)模型格式,它能够加速AI模型在不同平台上的部署和推理过程。 项目提供的完整代码包含了模型转换、加载以及推理的全部步骤。通过指定的转换工具将训练好的YOLOv8-obb模型导出为ONNX格式,这一步是必要的,因为ONNX Runtime需要ONNX格式的模型来进行推理。然后,在代码中加载这个转换后的模型,初始化推理环境,并对输入图像进行预处理。 推理阶段,输入图像经过预处理后送入模型中,模型输出包括目标的类别标签、旋转边界框的坐标和相应的置信度分数。这些输出数据后续需要经过后处理步骤来过滤掉低置信度的检测结果,并将旋转框转换为可视化的格式,以便在图像上绘制出精确的目标位置。 整个过程利用了ONNX Runtime优秀的性能,使得目标检测的实时性得到了提升。这对于需要实时处理视频流的场景(如自动驾驶、安防监控等)尤为关键。此外,代码可能还包含了一些优化策略,例如模型量化、加速库的使用等,这些都是提高性能的有效手段。 值得注意的是,虽然YOLOv8-obb结合了旋转框检测技术,但在实际部署时仍然需要注意模型的准确性和鲁棒性,特别是在面对图像中的遮挡、光照变化以及目标变形等复杂情况时。 代码的具体实现细节包括模型转换的参数设置、图像预处理的方法、推理过程中的内存和计算资源管理、结果的后处理和可视化等。开发者需要针对具体的应用场景进行调优,以达到最佳的检测效果和性能平衡。 此外,代码库可能还包括了示例脚本,以便用户可以快速理解和上手,这些示例可能涵盖了模型的基本使用、特定场景下的定制化修改以及与其他系统集成的方法等。 为了确保项目的顺利实施,可能还包括了依赖项的管理,比如指定ONNX Runtime的版本、其他相关深度学习库的版本等,确保环境的一致性和代码的可复现性。 这个项目为开发者提供了一个能够快速部署和应用YOLOv8-obb旋转框目标检测模型的完整方案,适用于各种需要高效准确目标检测的场合。通过这种方式,开发者能够节省部署时间,集中精力在模型的优化和业务逻辑的开发上。
2025-04-11 17:04:06 8KB yolo onnxruntime
1
"TransUnet复现,完整代码(附实现说明)" 提供的是一个关于TransUnet模型的实现过程,这个模型是计算机视觉领域的一个重要应用,特别在医学图像分割任务中表现突出。TransUnet结合了Transformer的全局注意力机制和U-Net的卷积网络结构,旨在提高图像分割的精度。 "TransUnet复习,完整代码(附实现说明)" 暗示这是一个学习资源,帮助开发者理解和复现TransUnet模型。通过提供的代码和文档,开发者可以深入理解TransUnet的工作原理,并将其应用于自己的项目中。 "软件/插件" 表明这是一套软件工具,可能包括脚本、库或插件,用于搭建和训练TransUnet模型。 【压缩包子文件的文件名称列表】中的各个文件具有以下作用: 1. **LICENSE**: 这通常包含项目的许可协议,规定了用户可以如何使用、修改和分发代码。 2. **README.md**: 这是一个Markdown格式的文件,通常包含了项目简介、安装指南、使用方法等关键信息,对于理解整个项目非常有帮助。 3. **test.py**: 这可能是测试代码,用于验证模型的功能和性能,确保代码正确运行。 4. **utils.py**: 通常包含辅助函数和类,用于支持主要代码模块,如数据预处理、模型保存加载等。 5. **train.py**: 这是模型训练的主程序,可能包含了数据加载、模型构建、训练循环和损失计算等核心步骤。 6. **trainer.py**: 可能定义了一个训练器类,负责管理模型的训练过程,如优化器、学习率调度、模型检查点等。 7. **To_2d.py** 和 **To_3d.py**: 这两个文件可能涉及图像的维度转换,可能用于将3D图像转换为2D进行处理,或者反之。 8. **show_label_to_color.py**: 可能是用来可视化分割结果的脚本,将分割出的类别标签映射到不同的颜色上,便于观察。 9. **make_list_file.py**: 这个文件可能是用来创建数据列表的,数据列表常用于指示训练和验证数据集的路径,方便批量处理。 通过这些文件,开发者可以了解TransUnet的全貌,包括数据预处理、模型构建、训练流程以及结果可视化。这对于学习和实践深度学习模型,尤其是TransUnet这样的高级模型,是非常宝贵的资源。在实践中,开发者需要根据自身的硬件环境和数据集调整代码,以适应特定的图像分割任务。同时,理解并复现这样的模型也有助于提升对深度学习和计算机视觉的理解。
2025-04-05 20:31:25 751.19MB
1
在当今数字化时代,数据驱动的决策变得越来越重要,特别是在预测分析领域。本资源包提供了一个针对汽车行业销量数据的时间序列分析模型,旨在使用长短期记忆网络(LSTM)——一种特殊的循环神经网络(RNN),来预测汽车销量的趋势。通过这样的神经网络,可以有效地学习和模仿汽车销量随时间变化的规律。 提到的car.csv文件是一个数据集,它包含了用于训练和测试LSTM模型所需的历史汽车销量数据。这类数据集通常包括日期、销量以及其他可能影响销量的因素,如经济指标、促销活动等。数据预处理是使用这些数据之前的重要步骤,包括去除异常值、处理缺失值、数据归一化等。在深度学习模型训练中,数据集的质量将直接影响模型的准确性和可靠性。 接着,LSTM理论知识模板.docx文件为用户提供了一个理论学习的基础。LSTM通过引入门控机制来解决传统RNN难以处理长期依赖问题。它包含输入门、遗忘门和输出门,这些门控结构使得LSTM能够保存或遗忘信息,并决定何时将信息传递到下一个状态。理解这些基本概念对于掌握LSTM的工作原理至关重要。 LSTM_car.py文件是本资源包的亮点,它包含了构建、训练和使用LSTM模型的完整代码。通过这个Python脚本,用户可以学习如何搭建LSTM网络,选择合适的损失函数和优化器,以及如何调参以提高模型的预测性能。对于学习者来说,它是一个非常实用的工具,可以将理论知识转化为实际操作。 从应用层面来看,能够准确预测汽车销量对于汽车制造商和销售商来说具有重大的经济意义。准确的销量预测可以帮助企业制定更加合理的生产计划和销售策略,减少库存积压,提高资金周转效率,从而在竞争激烈的市场中获得优势。此外,对于供应链管理、物流规划和市场营销等方面也有着直接的影响。 本资源包为研究人员和工程师提供了一个完整的工具集,涵盖了理论学习、数据处理和模型实现。这对于希望在时间序列预测领域深入研究或应用LSTM网络的用户来说,是一个宝贵的资源。通过实践学习,用户不仅可以提升自身的数据分析和机器学习能力,还能够更有效地解决实际问题。
2025-04-01 15:44:34 588KB 神经网络 lstm 数据集
1
随着html5的兴起,那些公司对大型游戏的开发正在慢慢疏远,一、开发周期长;二、运营花费高;他们正找一些能够克服这些缺点的替代品。正好,html5的出现可以改变这些现状,在淘宝、京东等一些大型电商网站、QQ、微信等聊天软件都出现了html5的小游戏,这说明html5越来越受到大家的青睐。接下来我用javascript实现一个小型游戏—打地鼠。 一.游戏简介 打地鼠这个游戏相信大家都不陌生,也是童年时候一款经典的游戏。本次游戏的编写是以html文件形式完成的,并且使用HBulider软件进行编写,使用谷歌浏览器展示效果,游戏将会采用JavaScript实现整体的逻辑流程,最终使用谷歌浏览器来实现
2025-03-30 09:33:10 641KB ip
1