针对基于心电和脉搏波的无创连续血压检测方法中特征点提取算法的计算量大的问题,提出了一种改进的提取特征点的差分算法,改进后算法的效率和特征点检测的精准度都得到了很大的提高。通过对采样数据进行相关性分析和回归分析,可以看到脉搏波传播时间与收缩压有强相关性,而与舒张压成中度相关。实验结果表明,利用改进后的特征点提取算法能够较准确地计算出脉搏波传播时间,进而计算出个体的收缩压,并且能够很好地满足AAMI国际标准对无创血压检测误差的要求。
2025-08-11 10:39:00 998KB 自然科学 论文
1
《基于模糊Q学习的机器人控制算法详解》 在人工智能领域,强化学习作为一种强大的机器学习方法,已经在诸多领域展现出卓越的性能。其中,Q学习作为强化学习的一种代表算法,以其无模型、在线学习的特点,被广泛应用于智能体的决策制定。而当Q学习与模糊逻辑相结合时,便形成了模糊Q学习,这种结合不仅保留了Q学习的优势,还引入了模糊系统的灵活性,使得机器人控制变得更加智能化和适应性强。本文将深入探讨基于模糊Q学习的机器人控制算法。 一、Q学习基础 Q学习是一种离策略的、基于表格的强化学习算法。它的核心思想是通过迭代更新Q表来寻找最优策略,使得长期奖励最大化。在Q学习中,每个状态-动作对都有一个Q值,表示执行该动作后预期获得的总奖励。通过不断的学习和环境交互,Q值会逐渐逼近最优解,从而指导智能体做出最佳决策。 二、模糊逻辑 模糊逻辑是一种处理不精确、不确定信息的方法,它模拟人类的模糊思维,允许我们处理介于“是”与“否”之间的模糊概念。模糊系统由输入、输出以及一组模糊规则组成,能够对复杂的、非线性的关系进行建模。在机器人控制中,模糊逻辑可以更好地处理传感器数据的不确定性,提高控制精度。 三、模糊Q学习 模糊Q学习是Q学习与模糊逻辑的融合,它将Q学习中的Q值表替换为模糊集,利用模糊推理来处理环境的不确定性。在模糊Q学习中,状态和动作不再是精确的数值,而是由模糊集表示的模糊变量。这样,智能体可以根据模糊规则进行决策,使控制策略更加灵活且适应性强。 四、机器人控制应用 在机器人控制领域,模糊Q学习可以用来解决复杂的路径规划、避障、目标追踪等问题。通过学习环境的动态特性,模糊Q学习可以让机器人在不断变化的环境中自动调整控制策略,实现自主导航。模糊系统的引入,使得机器人在面对复杂环境和不确定因素时,能做出更加符合实际情况的决策。 五、实现步骤 1. 初始化模糊Q表:创建一个模糊Q表,其中状态和动作是模糊变量,Q值是模糊集合。 2. 选择动作:根据当前模糊Q表,选择一个动作。 3. 执行动作并获取反馈:机器人执行选定的动作,观察环境变化并获取奖励。 4. 更新模糊Q值:根据Q学习的更新公式,更新模糊Q值,考虑当前奖励和未来可能的最大奖励。 5. 模糊推理:利用模糊规则对Q值进行模糊化和反模糊化,得出新的模糊动作。 6. 重复步骤2-5,直到满足停止条件(如达到最大迭代次数或收敛)。 六、挑战与前景 尽管模糊Q学习在机器人控制中表现出色,但仍有几个挑战需要克服,例如如何有效地设计模糊规则库、优化模糊推理过程以及处理高维度状态空间等。随着计算能力的提升和模糊理论的进一步发展,模糊Q学习在机器人控制及其他领域将有更广阔的应用前景。 总结,模糊Q学习结合了Q学习的优化能力和模糊逻辑的处理不确定性的优势,为机器人控制提供了一种强大的工具。通过理解和应用这一算法,我们可以构建出更加智能、适应性强的机器人系统,以应对现实世界中的各种挑战。
2025-08-10 16:31:45 38KB qlearning
1
基于劈窗算法的地表温度反演.ppt
2025-08-10 15:22:30 2.95MB
1
在游戏开发领域,拾取算法是实现用户与游戏世界交互的重要技术之一,尤其在3D游戏交互图形应用程序中,拾取算法更是扮演了至关重要的角色。传统上,拾取算法的实现往往依赖于鼠标点击来选择图形,并返回图元的标志及相关信息。随着3D图形技术的飞速发展,游戏场景变得越来越复杂,包含的图元数量也日益庞大,传统算法面临效率低下的问题,这在很大程度上影响了游戏体验。 为了解决这一问题,本文提出了一种基于八叉树结构的改进拾取算法。八叉树作为一种树型数据结构,被广泛应用于3D游戏场景的渲染中。它的工作原理是将整个场景递归地划分成更小的子区域,每个节点最多有八个子节点。这种结构不仅能够提高渲染效率,还能用于实现更高效的拾取算法。 八叉树拾取算法的关键在于,它能有效地减少鼠标拾取时所需进行的射线与图元相交判断次数。算法首先将整个网格模型的包围盒作为根节点,然后递归地对其进行分割,直到每个节点所包含的三角形数量少于一个特定阈值(例如30)。在这一过程中,不含三角形图元的节点将被剔除,最终形成一个包含三角形图元的树状结构。接着,算法会计算拾取射线,并判断它与场景中所有三角形图元的关系,以此来确定鼠标是否拾取到某个对象。与传统方法相比,该算法大大减少了不必要的计算量,从而提高了拾取的运算效率。 文章中提到了DirectXsdk中的D3DXIntersect方法,这是一种常用的判断拾取问题的方法。该方法通过计算拾取射线与所有三角形图元的交点来判断鼠标是否选取物体。尽管它提供了一种解决方案,但若场景中三角形数量庞大,仍然可能导致效率问题。因此,使用基于八叉树的改进拾取算法能够更好地应对复杂场景下的拾取需求。 为了验证八叉树拾取算法的效果,文章通过实证研究探讨了该算法在游戏中的应用效果。研究结果表明,在实际应用中,该算法能有效提高鼠标拾取技术的响应速度。在对鼠标点击响应要求较高的实时射击游戏中,这一点尤为重要。拾取算法的高效性直接影响到游戏的流畅度和玩家的操作体验,因此,在高复杂度的游戏环境中,基于八叉树的拾取算法具有很高的参考价值和应用潜力。 基于八叉树的拾取算法通过优化数据结构和减少不必要的计算来提高性能,使得拾取操作更加高效。这一技术的应用不仅能够改善游戏体验,还能推动游戏开发技术的进步。随着游戏图形和交互技术的不断进化,我们有理由相信,八叉树拾取算法及其相关技术将会在未来的游戏中扮演更加重要的角色。
2025-08-10 09:39:32 314KB
1
内容概要:本文针对Salto机器人的智能夹爪系统开发需求,从硬件架构、软件算法和嵌入式系统三个维度提供完整的解决方案。硬件架构方面,详细描述了由IMU传感器、STM32H7主控、Dynamixel舵机、ToF激光雷达、压力传感器阵列、ESP32协处理器和AI加速器组成的硬件拓扑结构。软件算法部分,提供了基于STM32 HAL库和ROS2框架的核心C++源代码,包括松鼠抓取模式的运动控制算法和基于TensorFlow Lite Micro的跳跃预测模型。嵌入式系统方面,介绍了系统的初始化、主控制循环、关键技术实现(如仿生运动控制、自适应阻抗控制、跳跃预测模型)及系统部署流程。此外,还详细描述了跳跃预测模型的训练过程,涵盖数据采集、特征工程、LSTM模型架构、训练优化策略及模型部署优化。 适合人群:具备嵌入式系统开发经验,熟悉C++编程语言,对机器人技术感兴趣的工程师和技术人员。 使用场景及目标:①帮助开发者理解Salto机器人智能夹爪系统的硬件架构设计;②掌握基于STM32 HAL库和ROS2框架的软件算法实现;③学习如何训练和部署跳跃预测模型,提高机器人的跳跃预测能力。 其他说明:此资源不仅提供了详细的硬件和软件设计方案,还包含了完整的训练跳跃预测模型的方法。开发者可以根据提供的代码和训练方案,在STM32H7平台上进行实际部署和测试。建议在学习过程中结合硬件搭建和代码调试,逐步深入理解每个模块的功能和实现细节。
2025-08-10 09:15:05 24KB 嵌入式系统 ROS2 TensorFlow Lite
1
DeepSeek 【创新未发表】基于matlab人工旅鼠算法ALA无人机避障三维航迹规划
2025-08-10 03:25:26 113B matlab
1
在当今能源领域,风力发电作为一种绿色的可再生能源,得到了广泛的应用。然而,风力发电的功率输出具有间歇性和不确定性,这给电网的稳定运行带来了一定的挑战。为了解决这一问题,混合储能系统被提出作为一种有效的功率平抑手段。通过合理配置储能系统中不同类型储能单元的功率和容量,可以在风力发电功率波动时,实现对电网功率的平衡,从而提高整个电力系统的可靠性。 MATLAB(Matrix Laboratory)是一种集数值分析、矩阵计算、信号处理和图形显示于一体的高性能语言,广泛应用于工程计算和算法开发。在混合储能系统的功率分配策略和容量配置中,MATLAB能够通过建模和仿真,帮助研究者和工程师设计和优化控制算法。 在本文件中,提到了混合储能功率分配策略和容量配置的研究背景——风力并网功率平抑。具体的研究方法包括遗传算法、麻雀搜索算法、变分模态分解(VMD)等先进算法。遗传算法是一种模拟生物进化的优化算法,它通过选择、交叉和变异等操作产生新一代解,以期找到最优解或近似最优解。麻雀搜索算法是一种基于群体智能的优化算法,受麻雀群体觅食行为的启发,通过个体的聚集和扩散来搜索全局最优解。变分模态分解(VMD)则是一种分解信号的方法,它能够将复杂的信号分解为一系列模态分量,每个分量具有不同的中心频率和带宽。 目标是实现经济性最优,即在满足风电功率平滑要求的同时,尽可能减少储能系统的投资和运行成本。为了达到这个目标,需要构建一个储能系统的变寿命模型。这个模型能够根据储能系统的充放电状态、温度、老化效应等因素,预测储能系统的使用寿命和性能退化情况。通过这种模型,可以对储能系统容量配置进行优化,以适应风力发电功率波动的特性。 在本文件的压缩包中,包含了一个可运行的算法源程序。这个程序可能包含了上述提到的遗传算法、麻雀搜索算法、VMD等算法的实现代码,以及相应的模型构建和仿真测试功能。通过运行这个源程序,研究人员可以模拟不同参数下的储能功率分配策略和容量配置,进而分析其对电网功率平滑的效果,以及对系统经济性的影响。 文件名称列表中的“实现的混合储能功率分配策略和容量配置背景风力并.html”可能是一个HTML文件,它可能包含了本研究的详细介绍、研究结果展示或者是一个用户交互界面,允许用户输入特定参数并获取对应的仿真结果。而“1.jpg”、“2.jpg”、“3.jpg”、“4.jpg”这些文件则是相关的图表或图片,它们可能展示了研究中的关键数据、仿真结果或算法流程图等,增强了研究的可视化效果。 该文件集中的研究涉及了可再生能源并网的功率波动问题,提出了一种利用混合储能系统进行功率平抑的解决方案,并通过MATLAB软件实现了相关算法的开发和优化。研究成果不仅有助于提升风力发电的并网性能,同时在理论和实践上对储能系统的经济性配置具有重要意义。
2025-08-07 22:00:38 841KB 柔性数组
1
内容概要:本文详细介绍了如何利用MATLAB/Simulink搭建光伏发电机模型,涵盖光伏阵列、电池模型以及MPPT最大功率跟踪算法。首先探讨了光伏电池的基本数学模型,特别是二极管特性方程及其关键参数对输出性能的影响。接着深入讲解了MPPT算法的具体实现方法,尤其是扰动观察法的应用技巧。此外,文中强调了温度补偿的重要性,并提供了具体的修正公式。最后讨论了模型验证过程中需要注意的实际问题,如环境因素对仿真的影响。 适合人群:从事光伏系统研究与开发的技术人员,以及对电力电子仿真感兴趣的工程专业学生。 使用场景及目标:帮助读者掌握光伏系统建模的关键技术和常见问题解决方法,提高仿真准确性,优化MPPT算法性能。 其他说明:文中提到多个实用技巧,如选择合适的求解器、设置合理的仿真步长、加入随机扰动模拟真实环境等。同时推荐了几篇有价值的参考文献供进一步学习。
2025-08-07 16:29:16 209KB
1
ISAR(逆合成孔径雷达)成像技术及其在MATLAB中的实现方法。ISAR成像作为一种高分辨率雷达成像技术,在航天、航空和海事等领域有广泛应用。文章首先概述了ISAR成像的基本原理,接着深入探讨了RD(距离多普勒)算法的关键技术,如距离压缩、运动补偿等。文中还展示了如何使用MATLAB进行ISAR成像的仿真,包括散射点模型的建立、雷达回波信号的生成、RD算法的具体实现步骤以及最终的成像结果显示。最后,文章强调了MATLAB作为强大工具在雷达信号处理和ISAR成像中的重要性和灵活性。 适合人群:从事雷达信号处理研究的技术人员、航空航天领域的科研工作者、高校相关专业的师生。 使用场景及目标:适用于希望深入了解ISAR成像技术和RD算法的研究人员,旨在帮助他们掌握MATLAB环境下雷达信号处理的方法和技术细节,从而应用于实际项目中。 阅读建议:读者可以通过跟随文中的步骤进行实验操作,加深对ISAR成像和RD算法的理解。同时,可以根据自己的研究方向调整参数设置,探索不同的应用场景。
2025-08-07 14:41:00 526KB
1
内容概要:本文深入介绍了雷达信号处理中的ISAR(逆合成孔径雷达)成像及其核心RD(距离-多普勒)算法。首先概述了雷达的工作原理和ISAR成像的特点,接着详细解释了RD算法的原理,包括距离压缩、多普勒频率分析、包络对齐和相位补偿等步骤。文中还提供了简化的Matlab仿真代码,展示了从参数初始化到最终生成ISAR图像的具体流程。最后,推荐了一些学习资源,帮助读者进一步深入了解雷达信号处理和ISAR成像。 适合人群:对雷达信号处理感兴趣的科研人员、工程技术人员及高校学生。 使用场景及目标:①研究ISAR成像技术及其应用场景;②学习和掌握RD算法的具体实现方法;③通过Matlab仿真代码加深对理论的理解并进行实验验证。 其他说明:虽然提供的代码仅为框架,但包含了关键步骤和技术细节,有助于初学者快速上手。同时,文中提到的相关资源也为后续深入学习提供了方向。
2025-08-07 14:40:07 648KB
1