内容索引:VC/C++源码,图形处理,几何变换  图象的几何变换,C 的算法实现,运行程序后主先打开一幅BMP位图,然后选择第二项内的某个选项,这些选项的大致意思是,X/Y坐标裁切、裁切、透明化、旋转、放大等。   命令行编译过程如下:   vcvars32   rc bmp.rc   cl geotrans.c bmp.res user32.lib gdi32.lib
1
第七章 航天器、地面交通工具和轮船 §§§§ 7.07.07.07.0 概述 本章论述的是无轨运载工具,对如何设置航天器、地面交通工具和轮船的基本和图形属性 及其访问限制等工作进行了说明,同时也讲解了如何利用航天器、地面交通工具和轮船来获取 分析工作所需的信息。 本章内容 RouteRouteRouteRoute 7.1 AttitudeAttitudeAttitudeAttitude 7.2 外部姿态文件 7.2.1 图形属性:AttributesAttributesAttributesAttributes 7.3 图形属性:DisplayDisplayDisplayDisplay TimesTimesTimesTimes 7.4 航天器、地面交通工具和轮船的限制 7.5 高级的航天器的限制 7.6 §§§§ 7.17.17.17.1 RouteRouteRouteRoute 为了定义航天器、地面交通工具和轮船的路线,可以打开该对象的 BasicBasicBasicBasic PropertiesPropertiesPropertiesProperties窗口, 在 RouteRouteRouteRoute 域中,用户可以定义对象的轨迹,在面板的顶部,StartStartStartStart TimeTimeTimeTime 和 StopStopStopStop TimeTimeTimeTime 规定了航 天器、地面交通工具和轮船的运行时间,StartStartStartStart TimeTimeTimeTime 和 StopStopStopStop TimeTimeTimeTime 的默认值是情节中的起始时 间,StepStepStepStep SizeSizeSizeSize 域中则定义了输出星历点的时间间隔,其默认值是 60 秒。 用户可以选择 GreatGreatGreatGreat ArcArcArcArc PropagatorPropagatorPropagatorPropagator 或外部文件的路线信息,GreatGreatGreatGreat ArcArcArcArc PropagatorPropagatorPropagatorPropagator 定义了航天器、地面交通工具和轮船在给定海拔高度处沿地球表面运动的点,航途基准点描 绘了路线的经度、纬度、海拔高度和速度等信息。每个位于地球大圆平面上的圆弧路径都可以 用来连接航途基准点。 每个航途基准点都包括经度、纬度、海拔高度、速度和旋转半径等信息,为了定义航途基 准点,在位于WaypointWaypointWaypointWaypointTableTableTableTable之下和其对应的五个注释框内输入相应的数据,当输入航途基准 点的所有元素后,使用EditEditEditEdit ModeModeModeMode域中的InsertInsertInsertInsert PointPointPointPoint选项,就会在位于注释框之上的WaypoinWaypoinWaypoinWaypointttt TableTableTableTable中出现相应的点,每一排描述的都是航天器、地面交通工具和轮船的路径中的航途基准 点。
2025-06-03 10:14:43 2.05MB
1
内容概要:本文档详细介绍了基于SABO-VMD-SVM的轴承故障诊断项目,旨在通过融合自适应块优化(SABO)、变分模式分解(VMD)和支持向量机(SVM)三种技术,构建一个高效、准确的故障诊断系统。项目背景强调了轴承故障诊断的重要性,特别是在现代制造业和能源产业中。文档详细描述了项目的目标、面临的挑战、创新点以及具体实施步骤,包括信号采集与预处理、VMD信号分解、SABO优化VMD参数、特征提取与选择、SVM分类和最终的故障诊断输出。此外,文档还展示了模型性能对比的效果预测图,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,特别是对MATLAB有一定了解的研发人员或工程师,以及从事机械设备维护和故障诊断工作的技术人员。 使用场景及目标:①适用于需要对机械设备进行实时监测和故障预测的场景,如制造业、能源行业、交通运输、航天航空等;②目标是提高故障诊断的准确性,减少设备停机时间,降低维修成本,确保生产过程的安全性和稳定性。 阅读建议:由于项目涉及多步骤的技术实现和算法优化,建议读者在学习过程中结合理论知识与实际代码,逐步理解和实践每个环节,同时关注模型性能优化和实际应用场景的适配。
2025-06-02 14:49:27 36KB MATLAB VMD 轴承故障诊断
1
内容概要:本文介绍了Python实现GWO-BiLSTM-Attention多输入分类预测的详细项目实例。项目背景源于深度学习在多模态数据处理中的需求,旨在通过结合灰狼优化(GWO)、双向LSTM(BiLSTM)和注意力机制(Attention),构建一个高效处理多源数据的分类预测模型。文章详细阐述了项目的目标与意义,如提高分类精度、增强模型优化能力和解释性、实现多模态数据融合等。项目面临的主要挑战包括数据预处理、模型复杂性、优化问题、跨模态数据融合和模型泛化能力。文章展示了模型的具体架构,包括GWO优化模块、BiLSTM模块、Attention机制模块和融合层,并提供了相应的代码示例,涵盖GWO算法、BiLSTM层和Attention机制的实现。 适合人群:具备一定编程基础,尤其是对深度学习和机器学习有一定了解的研发人员和技术爱好者。 使用场景及目标:①提高多模态数据分类任务的精度,如医疗诊断、金融预测、情感分析等;②通过GWO优化算法提升模型的超参数优化能力,避免局部最优解;③通过Attention机制增强模型的解释性,明确输入特征对分类结果的影响;④通过BiLSTM捕捉时间序列数据的前后依赖关系,提升模型的鲁棒性。 其他说明:该项目不仅在学术研究上有创新,还在实际应用中提供了有效的解决方案,适用于多个领域,如医疗、金融、智能推荐、情感分析、自动驾驶和智能制造等。此外,文章还展示了如何通过绘制性能指标曲线来评估模型的效果。
2025-05-30 19:34:08 41KB Python DeepLearning BiLSTM Attention
1
详细的注释和多客户端支持的C++ SOCKET同步阻塞与异步非阻塞通信代码示例,C++ SOCKET编程:同步阻塞与异步非阻塞通信服务端和客户端代码,支持多连接、断线重连及详细注释,VS2015编译通过,1、C++SOCKET同步阻塞、异步非阻塞通信服务端、客户端代码,支持多个客户端连接。 2、断线重连(服务端或客户端没有启动顺序要求,先开启的等待另一端连接); 3、服务端支持同时连接多个客户端; 4、阅读代码就明白通信道理,注释详细; 5、VS2015编译通过。 ,C++; SOCKET; 同步阻塞; 异步非阻塞通信; 服务端; 客户端; 多个客户端连接; 断线重连; 注释详细; VS2015编译通过。,《C++ Sockets编程实战:同步阻塞与异步非阻塞通信服务端客户端代码详解》
2025-05-30 10:36:52 228KB paas
1
基于PYTHON和周立功的dll开发上位机的示例代码合集
2025-05-28 21:54:26 23.56MB python CAN
1
1、ts中如何扩展window全局对象,给它增加方法和参数 2、组合式API如何构造一个工具类 3、同步、异步操作 4、组合式API 双向绑定,方法调用 5、H5和原生交互 6、WKWebView使用 7、window.webkit.messageHandlers使用说明
2025-05-28 19:42:31 206KB ios vue.js swift
1
内容概要:本文介绍了如何使用Matlab实现Transformer-ABKDE(Transformer自适应带宽核密度估计)进行多变量回归区间预测的详细项目实例。项目背景源于深度学习与传统核密度估计方法的结合,旨在提升多变量回归的预测精度、实现区间预测功能、增强模型适应性和鲁棒性,并拓展应用领域。项目面临的挑战包括数据噪声与异常值处理、模型复杂性与计算开销、区间预测准确性、模型泛化能力以及多变量数据处理。为解决这些问题,项目提出了自适应带宽机制、Transformer与核密度估计的结合、区间预测的实现、计算效率的提高及鲁棒性与稳定性的提升。模型架构包括Transformer编码器和自适应带宽核密度估计(ABKDE),并给出了详细的代码示例,包括数据预处理、Transformer编码器实现、自适应带宽核密度估计实现及效果预测图的绘制。; 适合人群:具备一定编程基础,特别是熟悉Matlab和机器学习算法的研发人员。; 使用场景及目标:①适用于金融风险预测、气象预测、供应链优化、医疗数据分析、智能交通系统等多个领域;②目标是提升多变量回归的预测精度,提供区间预测结果,增强模型的适应性和鲁棒性,拓展应用领域。; 其他说明:项目通过优化Transformer模型结构和结合自适应带宽核密度估计,减少了计算复杂度,提高了计算效率。代码示例展示了如何在Matlab中实现Transformer-ABKDE模型,并提供了详细的模型架构和技术细节,帮助用户理解和实践。
2025-05-27 08:44:07 38KB Transformer 多变量回归 MATLAB
1
在工业自动化领域,AB PLC(Allen Bradley Programmable Logic Controller)是一种广泛应用的控制器,以其稳定性、易用性和灵活性著称。1756系列和1769系列是AB PLC产品线中的两个重要分支,分别代表了ControlLogix和CompactLogix系列。本篇文章将深入探讨1756系列与1769系列之间的以太网通讯,通过MSG指令的使用,为读者提供实际操作的示例。 ControlLogix系列的1756-L55是一款高性能的控制器,适用于大型或复杂的自动化系统,而CompactLogix系列的1769-L35E则是面向中小型应用的经济型控制器。尽管它们在硬件规模和功能上有所不同,但两者都支持以太网通讯,这使得不同型号的PLC之间可以进行数据交换,实现系统的集成和协同工作。 以太网通讯是现代工业网络的基础,它允许PLC通过标准的TCP/IP协议进行通信,极大地提高了数据传输的速度和效率。在AB PLC中,MSG(Message)指令用于实现控制器间的通信,它可以发送和接收消息,包括数据、控制命令和状态信息。在1756-L55和1769-L35E之间的通讯中,MSG指令扮演了关键角色。 我们需要配置PLC的以太网接口,确保它们在同一网络段内,并设置好相应的IP地址。在RSLogix 5000编程软件中,创建一个新的项目,为每个PLC定义一个以太网通讯模块,如1756-EN2T或1769-ENBT。 接下来,使用MSG指令建立通讯链路。在源PLC(例如1756-L55)中,定义一个MSG指令,指定目标PLC的IP地址、模块槽号以及通信端口。然后,定义要发送的数据,可以是数字量、模拟量或者其他复杂数据结构。同时,在目标PLC(1769-L35E)中,也需要配置一个接收MSG的程序块,用来处理接收到的数据。 在MSG指令中,我们可以设置不同的服务类型,如读取、写入或者读写结合,以及超时和重试机制,以保证通讯的可靠性。此外,还可以利用“响应”选项,使源PLC等待目标PLC的确认,实现双向通讯。 1756与1769 MSG通讯案例中,可能包含具体的编程实例,展示如何在源PLC中编写发送MSG指令的代码,以及在目标PLC中编写接收并处理数据的代码。这些案例对于理解如何实际操作和解决可能遇到的问题非常有帮助。 AB PLC 1756系列与1769系列之间的以太网通讯通过MSG指令得以实现,这种通讯方式不仅方便了不同型号控制器之间的数据交换,还增强了系统的灵活性和扩展性。通过学习和实践,工程师可以熟练掌握这一技术,应用于各种工业自动化场景。
2025-05-24 21:41:29 847KB
1
### CMW500简单示例详解 #### 一、CMW500简介 CMW500是一款由罗德与施瓦茨(Rohde & Schwarz)公司生产的无线通信综合测试仪,广泛应用于无线通信设备的研发、生产和维护过程中。它支持包括2G、3G、4G/LTE、WiFi、Bluetooth等多种无线通信标准和技术,能够进行射频性能测试、协议一致性测试等。本篇文章将重点介绍如何使用CMW500进行LTE信令操作的基本步骤。 #### 二、复位CMW500 在进行任何操作之前,通常需要先复位CMW500,确保仪器处于初始状态。这一步骤可以通过仪器菜单中的“System Reset”选项来完成。复位完成后,可以开始下一步的操作准备。 #### 三、设置LTE信令测试环境 1. **开启LTE信令测试**: - 按下“SIGNAL GEN”按钮,选择“LTESignaling1”,这个选项会同时显示在仪器的任务栏中。 - 使用任务栏上的“On/Off”开关来打开LTE小区。 2. **连接DUT**(被测设备): - 在DUT上电并成功注册网络之后,通过按下“Connect”按钮建立连接。 - 接下来可以选择“LTE1MultiEval”选项(位于右侧的按键),以便进一步配置测试参数。 3. **配置TDD-LTE与FDD-LTE的不同测试场景**: - 对于TDD-LTE终端,因为被测试子帧通常是时隙2/3/7/8,所以在配置测试子帧时需要特别注意,通常会选择测试第二个时隙。 - 而对于FDD-LTE,可以使用默认配置来进行测试。 #### 四、执行LTE信令测试 1. **读取发射功率**: - 打开测试后,可以读取TX Power (dBm),这是评估发射信号强度的重要指标之一。 - 为了确保准确度,还可以选择“Signaling Parameters”->“TPC”->“Max Power”选项,再次读取TX Power (dBm)。 2. **执行切换测试**: - 选择“LTE1Signaling”->“Handover”,设置切换到Band 7,下行频率为3100MHz,带宽为10MHz。 - 这一步是为了验证设备在不同频段之间的切换性能。 3. **BLER测试**: - 选择“LTE1Ext.BLER”,并通过“On/Off”按键开始BLER测试。 - BLER(Block Error Rate)是衡量接收机性能的关键指标之一,通过该测试可以评估数据块传输过程中的错误率。 4. **调整参考信号接收功率**: - 选择“Signaling Parameters”->“Cell Setup”->“RSEPRE”选项,并根据3GPP标准的要求设置RSEPRE(Reference Signal Received Power per Resource Element)为120dBm/15kHz。 - RSEPRE是用于评估小区覆盖范围和质量的重要参数之一。 #### 五、总结 通过对上述步骤的详细介绍,我们可以看到,使用CMW500进行LTE信令测试的过程相对直观,但需要注意各个细节以确保测试结果的准确性。无论是TDD-LTE还是FDD-LTE,都有其特定的配置需求。此外,BLER测试和发射功率测量都是评估设备性能的重要环节。通过调整参考信号接收功率等参数,可以更全面地了解设备在网络环境下的表现情况。希望这些基础知识能够帮助您更好地理解和掌握CMW500的基本操作流程。
2025-05-23 22:57:15 578KB CMW500
1