轻梯度升压机 LightGBM是使用基于树的学习算法的梯度增强框架。 它被设计为分布式且高效的,具有以下优点: 更快的训练速度和更高的效率。 降低内存使用率。 更好的准确性。 支持并行,分布式和GPU学习。 能够处理大规模数据。 有关更多详细信息,请参阅。 受益于这些优势,LightGBM被广泛用于许多机器学习竞赛的中。 在公共数据集上进行的表明,LightGBM可以在效率和准确性上均优于现有的Boosting框架,并且显着降低了内存消耗。 此外, 表明,LightGBM通过使用多台机器进行特定设置的训练可以实现线性加速。 入门和文档 我们的主要文档位于并从此存储库生成。 如果您不熟悉LightGBM,请按照站点上进行。 接下来,您可能需要阅读: 显示了常见任务的命令行用法。 LightGBM支持的和算法。 是您可以进行的自定义的详尽列表。 和可以加快计算速度。
2021-07-02 11:44:26 6.71MB microsoft python machine-learning data-mining
1
数据挖掘算法,GBM,gradient boosting machine,梯度增强机,主要是原理,已经关键参数选择范围。
2019-12-21 18:53:03 187KB GBM
1