STM32F103是意法半导体(STMicroelectronics)生产的基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。在这个项目中,它被用来作为主控芯片,通过IIC(Inter-Integrated Circuit,也称为I²C)通信协议与TCA9555芯片进行通讯,以实现对大量GPIO(通用输入/输出)口的扩展。 TCA9555是一款由Texas Instruments制造的I²C接口的多通道数字输入/输出扩展器,它能提供16个独立的数字输入/输出线。通过连接两颗TCA9555,总共可以扩展出32个IO口。然而,描述中提到的“265路IO口”可能是笔误,因为单个TCA9555芯片最多只能提供16路,两颗则是32路。如果确实需要265路,可能需要使用更多的TCA9555并行连接,并通过I²C总线进行管理。 IIC是一种低速、两线制的串行通信协议,由Philips(现NXP Semiconductors)开发。在STM32F103上实现IIC通信需要配置相应的GPIO引脚为IIC模式,通常SCL(Serial Clock)和SDA(Serial Data)是两个必要的引脚。STM32的HAL库或LL库提供了方便的API函数来设置这些引脚,初始化IIC外设,以及发送和接收数据。 在项目实施过程中,首先需要配置STM32F103的时钟系统,确保IIC接口的时钟能够正常工作。接着,设置GPIO引脚为IIC模式,并启用IIC外设。然后,通过编程设定IIC的相关参数,如时钟频率、从设备地址等。当配置完成后,可以利用IIC协议发送读写命令到TCA9555,以控制其IO口的状态。 TCA9555具有中断功能,可以根据输入状态改变产生中断请求,这对于实时监控IO口变化非常有用。在STM32F103上,需要配置中断服务程序来处理这些中断事件。同时,TCA9555的每个IO口都可以单独配置为输入或输出,并且有独立的中断标志位,这使得它非常适合用于复杂的系统,其中需要灵活控制和监测大量GPIO口。 项目中可能包含的代码文件可能有:配置STM32F103 IIC的初始化函数、发送和接收数据的函数、设置和读取TCA9555 IO口状态的函数,以及中断处理程序。通过对这些代码的详细分析和理解,开发者可以学习到如何在实际项目中应用STM32F103与外部扩展芯片进行通信,以及如何管理和控制大量的GPIO口。 总结来说,这个项目涉及了嵌入式系统设计中的多个关键知识点,包括STM32F103微控制器的使用、C语言编程、IIC通信协议的实现、GPIO口的扩展以及中断处理。对于想要深入理解和实践嵌入式系统设计的工程师而言,这是一个极好的学习资源。
2025-04-09 16:34:06 9.49MB stm32 arm 嵌入式硬件
1
基于ZYNQ的FPGA数据DMA传输至以太网教学框架:高效实现数据采集与千兆网传输,适用于工程师与在校学生。,基于zynq的以太网传输工程教学。 内容:这是一个框架 将fpga获得的数据通过dma存入ddr 再从处理器端将数据从ddr读取并通过千兆网传输给电脑 意义:作为一个开发框架 继续这个框架可以半天就能实现数据采集功能 对于基于adc或者dac项目的验证开发非常高效 缩短开发周期 今后类似项目全部可以复用 重新开发工作量小于20% 适合人群:模拟半导体芯片的测试或应用工程师、FPGA ZYNQ需要的嵌入式工程师或者在校学生老师 FPGA工程 + vitis rtos 工程 + 工程说明文档 ,基于zynq;以太网传输;数据采集;fpga开发;zynq应用;框架复用。,基于Zynq的FPGA以太网传输教学框架:快速实现数据采集与复用开发
2025-04-07 19:52:45 136KB
1
【正文】 在嵌入式系统领域,STM32微控制器被广泛应用,而VEML7700是一款高精度、低功耗的环境光传感器,常用于光照强度的测量。本项目将详细介绍如何利用STM32通过IIC通信协议与VEML7700光照传感器进行交互,实现光照数据的采集。 我们要理解STM32和IIC协议的基本概念。STM32是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M内核的微控制器系列,拥有丰富的外设接口,如IIC(Inter-Integrated Circuit),也称为I²C,是一种多主控、双向二线制的串行通信协议,由飞利浦(现NXP半导体)开发,适合短距离、低速的设备间通信。 VEML7700光照传感器是ams公司生产的一款光感应器,它能检测环境光的强度,并以数字信号输出。该传感器具有宽动态范围,适用于各种光照条件,包括暗光到阳光直射。其内部集成了一个模拟前端(AFE)、一个ADC以及IIC接口,方便与微控制器连接。 要实现STM32与VEML7700的通信,我们需要进行以下步骤: 1. **配置STM32的IIC接口**:在STM32的固件库中,IIC接口需要通过配置GPIO引脚(通常为SDA和SCL)作为IIC模式,并设置相应的时钟频率。在HAL库中,这通常通过`HAL_I2C_Init()`函数完成。 2. **IIC通信初始化**:在开始与VEML7700通信前,需要发送开始条件、设置从设备地址(VEML7700的7位地址为0x10)并发送命令字节。命令字节可以控制传感器的工作模式,例如读取光照强度数据。 3. **读写操作**:根据VEML7700的数据手册,选择合适的寄存器读取或写入数据。例如,要读取光照强度,可能需要先写入一个命令到配置寄存器,然后读取结果寄存器。使用`HAL_I2C_Master_Transmit()`和`HAL_I2C_Master_Receive()`函数进行数据传输。 4. **数据处理**:接收到的原始数据通常需要进行一定的转换,比如除以系数,得到实际的光照强度值。这部分工作需要了解VEML7700的数据格式和单位。 5. **中断处理**:为了实时获取光照数据,可以设置IIC中断,当有数据可用时,STM32会触发中断服务程序,处理新数据。 6. **错误处理**:在通信过程中可能会遇到数据校验错误、超时等问题,需要编写相应的错误处理代码,确保系统的稳定性和可靠性。 在"VEML7700代码"这个压缩包文件中,通常包含了实现上述功能的C语言源代码,可能包括初始化配置、发送命令、读取数据以及处理结果的函数。通过分析和学习这些代码,开发者可以快速理解和掌握STM32与VEML7700的配合使用,从而在实际项目中实现光照强度的精确测量。 通过STM32和IIC协议与VEML7700光照传感器的结合,我们可以构建一个高效、低功耗的环境监测系统,广泛应用于智能家居、智能照明、健康监测等多个领域。对这个过程的理解和实践,对于提升嵌入式开发者的技能水平具有重要意义。
2025-04-06 20:24:45 658KB stm32
1
STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制 STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制,轻松跑上 2M 波特率。 STM32 中一般的 DMA 传输方向有内存->内存、外设->内存、内存->外设。通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART),在嵌入式开发中一般称为串口,通常用于中、低速通信场景,波特率低有 6400 bps,高能达到 4~5 Mbps。 在 STM32 中使用 DMA 收发数据,可以节约可观的 CPU 处理时间。特别是在高速、大数据量的场景中,DMA 是必须的,而双缓冲区、空闲中断以及 FIFO 数据缓冲区也是非常重要的成分。 在本文中,我们将使用 STM32CubeMX 配置串口,首先使能高速外部时钟,然后设置时钟树。接下来配置串口,选择一个串口,设置模式为 Asynchronous,设置波特率、帧长度、奇偶校验以及停止位长度。然后添加接收和发送的 DMA 配置,注意在 RX 中将 DMA 模式改为 Circular,这样 DMA 接收只用开启一次,缓冲区满后 DMA 会自动重置到缓冲区起始位置,不再需要每次接收完成后重新开启 DMA。 在串口收到数据之后,DMA 会逐字节搬运到 RX_Buf 中。当搬运到一定的数量时,就会产生中断(空闲中断、半满中断、全满中断),程序会进入回调函数以处理数据。全满中断和半满中断都很好理解,就是串口 DMA 的缓冲区填充了一半和填满时产生的中断。而空闲中断是串口在上一帧数据接收完成之后在一个字节的时间内没有接收到数据时产生的中断,即总线进入了空闲状态。 现在网络上大部分教程都使用了全满中断加空闲中断的方式来接收数据,不过这存在了一定的风险:DMA 可以独立于 CPU 传输数据,这意味着 CPU 和 DMA 有可能同时访问缓冲区,导致 CPU 处理其中的数据到中途时 DMA 继续传输数据把之前的缓冲区覆盖掉,造成了数据丢失。所以更合理的做法是借助半满中断实现乒乓缓存。 乒乓缓存是指一个缓存写入数据时,设备从另一个缓存读取数据进行处理;数据写入完成后,两边交换缓存,再分别写入和读取数据。这样给设备留足了处理数据的时间,避免缓冲区中旧数据还没读取完又被新数据覆盖掉的情况。 但是出现了一个小问题,就是 STM32 大部分型号的串口 DMA 只有一个缓冲区,要怎么实现乒乓缓存呢?没错,半满中断。现在,一个缓冲区能拆成两个来用了。看这图我们再来理解一下上面提到的三个中断:接受缓冲区的前半段填满后触发半满中断,后半段填满后触发全满中断;而这两个中断都没有触发,但是数据包已经结束且后续没有数据时,触发空闲中断。 举个例子:向这个缓冲区大小为 20 的程序传送一个大小为 25 的数据包,它会产生三次中断,如下图所示。程序实现原理介绍完成,感谢 ST 提供了 HAL 库,接下来再使用 C 语言实现它们就很简单了。首先开启串口 DMA 接收。 #define RX_BUF_SIZE 20 uint8_t USAR_RX_Buf[RX_BUF_SIZE]; 在上面的例子中,我们定义了一个大小为 20 的缓冲区 USAR_RX_Buf,並将其设置为串口 DMA 的接收缓冲区。然后,我们可以使用 HAL 库提供的函数来开启串口 DMA 接收。 HAL_UART_Receive_DMA(&huart1, USAR_RX_Buf, RX_BUF_SIZE); 在串口收到数据之后,DMA 会逐字节搬运到 RX_Buf 中。当搬运到一定的数量时,就会产生中断(空闲中断、半满中断、全满中断),程序会进入回调函数以处理数据。在回调函数中,我们可以将数据写入 FIFO 中供应用读取。 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // 将数据写入 FIFO 中 FIFO_Put(USAR_RX_Buf, RX_BUF_SIZE); } 在上面的例子中,我们使用 HAL 库提供的回调函数 HAL_UART_RxCpltCallback 来处理数据。在这个函数中,我们将数据写入 FIFO 中供应用读取。这样,我们就可以轻松地实现高速的串口收发机制。 使用 STM32 HAL 库可以轻松地实现高速的串口收发机制,轻松跑上 2M 波特率。同时,我们还可以使用乒乓缓存和空闲中断来避免数据丢失和提高系统的可靠性。
2025-04-04 19:14:28 1.22MB stm32
1
基于FPGA的Cortex-M3 MCU系统:带AHB APB总线与UART硬件RTL源码,支持ARMGCC与SWD仿真调试,扩展功能丰富的MCU开发平台(暂不含DMA和高级定时器),基于FPGA的Cortex-M3 MCU系统:RTL源码工程,含AHB APB总线、UART串口、四通道定时器,配套仿真与驱动,可扩展用户程序与IP调试功能(非DMA和高级定时器版本),FPGA上实现的cortex-m3的mcu的RTL源码,加AHB APB总线以及uart的硬件RTL源代码工程 使用了cortex-m3模型的mcu系统,包含ahb和apb总线,sram,uart,四通道基本定时器,可以跑armgcc编译的程序。 带有swd的仿真模型。 可以使用vcs进行swd仿真读写指定地址或寄存器。 带有的串口uart rtl代码,使用同步设计,不带流控。 带有配套的firmware驱动,可以实现收发数据的功能。 带有的四通道基本定时器,可以实现定时中断,具有自动reload和单次两种模式。 用于反馈环路实现、freertos和lwip等时基使用。 暂时不包括架构图中的DMA,高级定时器和以太网,后期
2025-04-02 15:33:06 11.35MB 柔性数组
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体公司(STMicroelectronics)生产。在本文中,我们将深入探讨如何使用STM32的硬件SPI(Serial Peripheral Interface)和DMA(Direct Memory Access)功能来高效地控制OLED(Organic Light-Emitting Diode)显示屏。 OLED屏幕是一种自发光显示技术,无需背光,因此具有更高的对比度和更低的功耗。在STM32上驱动OLED屏幕通常涉及通过SPI接口发送命令和数据,而DMA可以极大地减轻CPU负担,提高系统效率。 1. **STM32硬件SPI**:SPI是一种同步串行通信协议,用于微控制器与外部设备间的数据传输。STM32内建了多个SPI接口,每个都支持主模式和从模式。在控制OLED屏幕时,STM32通常作为主机,OLED驱动芯片作为从机。配置SPI时,需要设置时钟极性(CPOL)、时钟相位(CPHA)、数据位宽、波特率等参数。 2. **DMA功能**:DMA是一种允许数据在内存和外设之间直接交换的技术,无需CPU干预。在STM32中,有多个DMA通道可以分配给不同的外设,如SPI。通过设置DMA传输请求源、传输数据大小、地址增量方式等,可以实现数据的批量传输,显著提高系统性能。 3. **配置OLED屏幕**:OLED屏幕通常使用I2C或SPI接口,这里我们关注SPI。需要初始化OLED驱动芯片,发送初始化序列,包括设置显示模式、分辨率、对比度等。这些命令通过STM32的SPI接口发送。 4. **DMA与SPI的配合**:在STM32中,设置SPI接口为DMA模式,指定相应的DMA通道。当SPI发送缓冲区为空时,DMA会自动从内存中读取数据并发送,直到所有数据传输完毕。这样,CPU可以执行其他任务,而不是等待SPI传输完成。 5. **数据传输**:在显示图像或文本时,需要将数据加载到内存中的一个缓冲区,然后通过DMA传输到SPI接口。STM32的库函数或HAL(Hardware Abstraction Layer)可以简化这个过程。 6. **中断处理**:为了确保数据正确发送,还可以设置SPI的中断,例如传输完成中断。当DMA传输结束时,中断处理函数会被调用,进行必要的清理工作,如重置传输标志,准备下一次传输。 7. **代码示例**:使用STM32CubeMX生成初始的SPI和DMA配置,然后在用户代码中编写OLED屏幕的初始化和数据传输函数。例如,使用HAL_SPI_Transmit_DMA()启动一个DMA传输,并在中断服务程序中处理传输完成事件。 8. **优化考虑**:在实际应用中,还需要考虑电源管理、显示刷新率、屏幕旋转等功能。同时,为了防止数据竞争,需要正确管理和同步SPI和DMA的访问。 总结,通过STM32的硬件SPI和DMA,我们可以高效地控制OLED屏幕,实现流畅的显示效果,同时降低CPU的负载,提升整个系统的响应速度和能效。理解和熟练掌握这些技术,对于开发基于STM32的嵌入式系统至关重要。
2025-03-31 20:43:47 7.82MB STM32
1
STM32F4系列微控制器是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M4内核的高性能MCU,广泛应用于嵌入式系统设计。HAL(Hardware Abstraction Layer,硬件抽象层)库是STM32官方提供的一个软件框架,旨在提供一种与具体硬件无关的编程接口,使得开发者能更专注于应用程序的逻辑,而无需过多关注底层硬件细节。 在"正点原子HAL库 STM32F4 IIC协议(学习自用附源码)"的学习资源中,我们将深入理解如何利用STM32F4的HAL库来实现IIC(Inter-Integrated Circuit)通信协议。IIC是一种多主机、两线式串行总线,常用于微控制器与传感器、显示设备等外设之间的通信,具有低引脚数、简单、高效的特点。 我们需要了解IIC的基本概念和工作原理。IIC协议规定了起始和停止条件、数据传输方向、时钟同步以及数据位的读写规则。主设备通过拉低SCL(时钟线)和SDA(数据线)产生起始条件,然后发送7位的从设备地址和1位的读写方向位。从设备响应后,主设备和从设备就可以通过SDA线交换数据,每次数据传输都由SCL线的上升沿来同步。 在HAL库中,STM32F4的IIC功能通常通过HAL_I2C_Master_Transmit()和HAL_I2C_Master_Receive()等函数来实现。这些函数负责设置IIC接口的配置,如时钟频率、地址模式等,并执行数据的发送或接收。开发者需要先初始化IIC外设,例如: ```c I2C_InitTypeDef InitStruct; HAL_I2C_Init(&hi2c1); InitStruct.ClockSpeed = 100000; // 设置IIC时钟速度为100kHz InitStruct.DutyCycle = I2C_DUTYCYCLE_2; // 使用2:1的占空比 InitStruct.OwnAddress1 = 0x00; // 设置本机地址,这里是0 InitStruct.AddressingMode = I2C_ADDRESSINGMODE_7BIT; // 使用7位地址模式 InitStruct.DualAddressMode = I2C_DUALADDRESS_DISABLE; // 不启用双地址模式 InitStruct.GeneralCallMode = I2C_GENERALCALL_DISABLE; // 关闭通用呼叫模式 InitStruct.NoStretchMode = I2C_NOSTRETCH_DISABLE; // 关闭时钟拉伸模式 HAL_I2C_Init(&hi2c1, &InitStruct); // 初始化I2C外设 ``` 接下来,可以使用HAL_I2C_Master_Transmit()发送数据到从设备,例如发送设备地址和命令字节: ```c uint8_t device_addr = 0x10; // 假设从设备地址为0x10 uint8_t cmd = 0x01; // 命令字节 HAL_StatusTypeDef status = HAL_I2C_Master_Transmit(&hi2c1, device_addr << 1, &cmd, 1, HAL_MAX_DELAY); if (status == HAL_OK) { // 数据发送成功,可以进行后续操作 } else { // 数据发送失败,处理错误 } ``` 接收数据则使用HAL_I2C_Master_Receive()函数,同样需要指定从设备地址和要接收的数据长度: ```c uint8_t data; status = HAL_I2C_Master_Receive(&hi2c1, device_addr << 1 | 1, &data, 1, HAL_MAX_DELAY); if (status == HAL_OK) { // 数据接收成功,处理接收到的数据 } else { // 数据接收失败,处理错误 } ``` 在实际应用中,可能还需要处理中断和错误情况,比如使用HAL_I2C_MspInit()和HAL_I2C_MspDeInit()来配置GPIO和NVIC,以及使用HAL_I2C_IsDeviceReady()检测从设备是否存在。 通过这个学习资源,你可以掌握如何在STM32F4平台上使用HAL库实现IIC通信,这对于开发涉及传感器、显示屏或其他IIC设备的项目非常有帮助。结合提供的源码,你可以逐步理解每个步骤的作用,加深对STM32F4和IIC协议的理解,并将这些知识运用到自己的项目中。
2025-03-31 14:56:53 18.85MB stm32
1
【STM32+HAL】七针0.96寸OLED显示配置(SPI + DMA)是关于使用STM32微控制器通过SPI接口和DMA(直接内存访问)来驱动0.96英寸OLED显示屏的教程。这篇教程将涵盖STM32微控制器的基础知识,OLED显示屏的工作原理,SPI通信协议,以及如何利用STM32的HAL库进行DMA配置。 STM32是意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M系列内核的微控制器。它们广泛应用于嵌入式系统设计,以其高性能、低功耗和丰富的外设接口而受到青睐。 OLED(Organic Light-Emitting Diode,有机发光二极管)显示屏是一种自发光显示技术,每个像素由有机材料组成,当电流通过时会发出光。与LCD相比,OLED具有更高的对比度、更快的响应速度和更广的视角。0.96英寸OLED通常适用于小型嵌入式设备,如智能硬件、物联网设备等。 在STM32上配置OLED显示,首先需要理解SPI(Serial Peripheral Interface)通信协议。SPI是一种同步串行接口,允许主设备(在这里是STM32)与一个或多个从设备(OLED驱动芯片)进行全双工通信。SPI有四种传输模式,通过调整时钟极性和相位,可以实现灵活的数据传输方向和时序。 HAL库是STM32的高级层软件框架,它为开发者提供了标准化的API(应用程序编程接口),简化了底层硬件的控制。在配置OLED显示时,我们需要使用HAL库中的SPI初始化函数,设置SPI的工作模式、时钟频率、数据位宽等参数。 接下来是DMA的介绍。DMA是一种硬件机制,允许数据在没有CPU参与的情况下直接在内存和外设之间传输,从而提高系统的效率。在本例中,我们使用DMA来传输要显示的数据,减轻CPU负担。配置DMA涉及选择合适的通道,设置源和目标地址,以及传输长度。同时,还需要在SPI传输过程中启用DMA请求,以便在SPI完成数据发送后触发DMA传输。 具体步骤包括: 1. 初始化STM32系统时钟,确保足够的时钟资源供SPI和DMA使用。 2. 配置GPIO引脚,用于连接STM32和OLED的SPI接口及使能、复用等功能引脚。 3. 使用HAL_SPI_Init()函数初始化SPI接口,设置其工作模式、时钟速度等参数。 4. 配置DMA,使用HAL_DMA_Init()函数,指定传输方向、通道、地址和长度。 5. 将DMA与SPI接口关联,使用HAL_SPI_Transmit_DMA()函数开启传输,并在需要时启动DMA传输。 6. 编写中断服务程序,处理DMA传输完成的中断事件,更新显示数据或进行其他操作。 在实践中,还需要编写驱动代码来控制OLED显示特定的内容,这可能涉及对OLED显示芯片的命令序列的理解,例如初始化序列、清屏、设置坐标、显示文本或图像等。这部分通常涉及到与OLED驱动芯片的数据手册紧密相关的寄存器操作。 总结来说,"七针0.96寸OLED显示配置(SPI + DMA)"涵盖了STM32微控制器的HAL库使用,SPI通信协议,以及DMA传输机制,这些都是嵌入式系统开发中的重要知识点。通过学习和实践这个主题,开发者能够提升其在嵌入式系统设计和硬件驱动编程的能力。
2025-02-08 01:20:53 8.82MB stm32
1
STM32F407实现FFT,求频谱
2024-11-29 16:11:24 43.78MB stm32f407vet6 adc+dma dsp库 fft
1
在本文中,我们将探讨如何利用AT32微控制器的高级特性,包括高速ADC采样、PWM变频以及DMA(直接存储器访问)技术,来实现高效的数据处理和控制任务。AT32F437是一款高性能的微控制器,其内部集成了多个ADC单元和PWM定时器,以及强大的DMA控制器,这使得它非常适合于需要高速采样和实时控制的应用场景。 我们关注的是如何将AT32的ADC采样率提升至14.4MHz。常规的ADC采样率为4MHz,但通过巧妙地利用芯片资源,我们可以将其提高三倍。方法是利用三个独立的ADC通道,每个通道错开采集同一输入信号,然后将数据拼接,从而达到12MHz的采样率。在该过程中,ADC的时钟被设置为最大值的72MHz,每个12位转换需要15个ADC时钟周期。通过计算,我们可以得知采样频率为72MHz除以15乘以3,即14.4MHz。在实际测试中,通过配置Timer1触发ADC采样,使用DMA模式2进行数据传输,结果显示采样率接近14MHz,与理论计算相符。 接下来,我们讨论如何实现PWM频率从900kHz到1.1MHz的变频。这一任务需要用到DMA的多路复用功能,以及高级或通用定时器的DMA突发模式。具体操作中,选择Timer1的通道1映射到GPIOA的第8管脚,以驱动PWM输出。配置时,确保Timer的DMA设置正确,同时对GPIO进行适当配置,以便信号能够正确输出。在实际的实验中,虽然示波器捕获的波形并不完全按照900kHz到1.1MHz的频率变化,但证明了通过DMA和Timer的配合可以实现PWM频率的动态调整。 总结,通过AT32F437的ADC、PWM和DMA功能,我们可以实现高速的模拟信号采样和动态的数字信号输出。这样的技术组合对于实时信号处理和控制应用,例如音频处理、电机控制或者电力电子设备监控等,具有重要的价值。理解并熟练掌握这些技术,对于开发高效能的嵌入式系统至关重要。
2024-11-26 17:44:11 1.55MB AT32
1