蚁群算法是一种智能优化算法,在TSP商旅问题上得到广泛使用。蚁群算法于1992年由Marco Dorigo首次提出,该算法来源于蚂蚁觅食行为。 (1)数据准备 为了防止既有变量的干扰,首先将环境变量清空。然后将城市的位置坐标从数据文件(详见源程序里的excel文件)读入程序,并保存到变量为citys的矩阵中(第一列为城市的横坐标,第二列为城市的纵坐标)。 (2)计算城市距离矩阵 根据平面几何中两点间距离公式及城市坐标矩阵citys,可以很容易计算出任意两城市之间的距离。但需要注意的是,这样计算出的矩阵对角线上的元素为0,然而为保证启发函数的分母不为0,需将对角线上的元素修正为一个足够小的正数。从数据的数量级判断,修正为以下,我们认为就足够了。 (3)初始化参数 计算之前需要对参数进行初始化,同时为了加快程序的执行速度,对于程序中涉及的一些过程量,需要预分配其存储容量。 (4)迭代寻找最佳路径 该步为整个算法的核心。首先要根据蚂蚁的转移概率构建解空间,即逐个蚂蚁逐个城市访问,直至遍历所有城市。然后计算各个蚂蚁经过路径的长度,并在每次迭代后根据信息素更新公式实时更新各个城市连接路径上的信息
2026-01-02 21:10:01 640KB matlab
1
本次南京邮电大学物联网学院举行的matlab仿真实践周活动,为学生提供了完整的实践环境和材料,以作业和报告的形式对学习成果进行了系统化整理和记录。活动内容涵盖了从基本的matlab操作到复杂仿真实验的全过程,使学生能够在动手实践中深入掌握matlab软件应用的各个方面。 在文件列表中,首先提到了“解压所有文件说明-1类.docx”,这可能是一份详尽的指南文件,用于指导学生如何正确解压和使用压缩包中的内容,确保每位参与仿真实践的学生都能顺利开始实践活动。紧接着是“课程报告模板.docx”,这份文件为学生提供了报告撰写的标准格式,帮助学生规范报告的结构,使报告内容清晰、条理化,便于评审老师审阅和理解。 接下来的“课题.docx”文件,很有可能详细介绍了实践活动的具体课题,课题的选择对于仿真实验来说至关重要,它决定了学生将要进行仿真的具体内容和方向,以及通过实践活动需要达到的学习目标。文件“流程图.eddx”很可能包含了一系列的仿真实验流程图,流程图是实验设计的重要组成部分,能够直观地反映仿真实验的步骤和逻辑,帮助学生更好地理解实验过程。 “README.md”文件则通常是一份自述文件,可能包含对项目或代码库的介绍、安装说明、使用方法等,这样的文件有利于指导学生理解项目结构、快速上手实践内容。“剩余完整代码.zip”中可能包含了学生在完成作业和实验报告过程中所用到的全部代码,这些代码是实践过程的直接产物,是学生应用所学知识解决实际问题的体现。 除此之外,还出现了几份个人作业文件,例如“B22080228徐基恒作业3”、“B22080228徐基恒作业1”和“B22080228徐基恒仿真实验报告”,这些文件展示了参与实践活动学生的个人作业和实验报告,包含了学生对理论知识的理解和实际操作的能力,以及对仿真实验进行的分析和总结。 徐基恒的作业4文件也是实践周活动的一部分,它可能包含了徐基恒同学在仿真实践周中的第四次作业内容,这份作业可能是对他前三次作业内容的进一步深化和拓展。 这一系列的文件说明了南京邮电大学物联网学院为了提高学生的实践能力和创新思维,在仿真实践周活动中提供了全面的实践平台和丰富的学习资源,通过具体课题的设置和详细报告模板的提供,激发了学生对物联网技术的学习热情,提升了他们运用matlab软件进行仿真实验的操作能力,从而为学生将来的学习和研究奠定了坚实的基础。
2026-01-02 20:55:27 16.27MB
1
气动导弹姿态控制律设计与MATLAB仿真源代码分享:定义参数与曲线绘制,气动导弹姿态控制律设计及MATLAB仿真源代码分享:定义参数与曲线绘制指南,基于气动力的导弹姿态控制(含MATLAB仿真),提供基于气动力控制的导弹姿态控制律设计参考文献,同时提供MATLAB仿真源代码,源代码内包含定义导弹、大气、地球、初始位置、速度、弹道、姿态、舵偏角、控制律、飞行力学方程序等参数,并且可以完成俯仰角、舵偏角、滚转角、导弹运动轨迹等曲线的绘制,导弹姿态控制; MATLAB仿真; 导弹姿态控制律设计; 仿真源代码; 定义参数; 飞行力学方程; 运动轨迹绘制,《基于气动力控制的导弹姿态控制律设计与MATLAB仿真研究》
2025-12-31 14:04:46 139KB csrf
1
内容概要:本文介绍了基于V2G技术的新能源汽车车载双向OBC(On-Board Charger),PFC(功率因数校正),LLC(谐振变换器)以及V2G(Vehicle to Grid)双向充电桩的MATLAB仿真模型。该模型包括前级电路的双向AC/DC单相PWM整流器和后级电路的双向DC/DC CLLC谐振变换器,实现了3.5kW的仿真功率。正向变换时,单相交流电网向电动汽车输出DC360V电能;反向变换时,电动汽车向电网回馈能量。通过这种方式,不仅提高了电动汽车的能源利用率,还使电网更加智能和环保。 适合人群:从事新能源汽车技术研发的专业人士、高校相关专业的师生、对新能源汽车充电技术感兴趣的科研人员。 使用场景及目标:适用于研究和开发新能源汽车双向充电技术,特别是OBC、PFC、LLC和V2G技术的应用。目标是提升电动汽车的能源利用效率,促进智能电网的发展。 其他说明:文中提供了部分MATLAB代码示例,帮助读者理解和构建仿真模型。实际应用中涉及更复杂的电路设计和控制算法。
2025-12-26 22:52:58 1.18MB
1
内容概要:本文详细探讨了基于V2G(车到电网)技术的电动汽车双向OBC(车载充电机)的MATLAB仿真模型构建。系统分为前级双向AC/DC单相PWM整流器和后级双向DC/DC CLLC谐振变换器。前级电路实现单位功率因数的AC/DC转换,后级电路通过PFM控制实现高效双向DC/DC转换。文中还介绍了功率设置、仿真波形分析以及充放电模式切换的控制逻辑。通过该仿真模型,能够深入了解新能源汽车车载充电机的工作原理,为实际硬件设计提供理论支持。 适合人群:从事新能源汽车技术研发的工程师和技术爱好者,尤其是对电力电子和MATLAB仿真感兴趣的读者。 使用场景及目标:适用于希望掌握电动汽车双向OBC设计原理的研究人员和工程师。目标是通过仿真模型理解双向OBC的工作机制,优化参数配置,提高系统效率和稳定性。 其他说明:文中提供了详细的MATLAB代码片段和参数设置技巧,有助于读者快速上手并进行进一步的实验和改进。
2025-12-26 22:48:37 1.17MB
1
MATLAB仿真:基于分步傅里叶与龙格库塔方法的锁模激光器耦合非线性薛定谔方程模拟结果解析——脉冲与光谱动态演化的视觉展示,MATLAB模拟锁模激光器:分步傅里叶与龙格库塔法求解耦合非线性薛定谔方程的动态演化研究,MATLAB 锁模激光器模拟 分步傅里叶加龙格库塔求解耦合非线性薛定谔方程 模拟结果可看脉冲和光谱的动态演化 ,MATLAB; 锁模激光器模拟; 分步傅里叶; 龙格库塔; 耦合非线性薛定谔方程; 脉冲动态演化; 光谱动态演化。,MATLAB模拟锁模激光器:傅里叶-龙格库塔求解非线性薛定谔方程的脉冲与光谱动态演化
2025-12-26 20:26:57 849KB
1
在当今社会,随着信息时代的快速发展,通信技术也在不断进步。通信原理作为一门研究信息传递规律的学科,涉及信号的调制、传输、处理和接收等多个方面。MATLAB作为一种高性能的数值计算和可视化软件,广泛应用于工程计算、控制设计、通信系统仿真等领域。基于MATLAB的通信原理系统仿真,则是将通信原理中的理论与计算机仿真实验相结合,通过编程实现对通信系统的模拟,这对于通信工程教育和科研工作具有重要的意义。 本资源包含了详细的MATLAB代码和模型,旨在帮助用户通过仿真实验来理解和掌握通信系统的基本原理和关键技术。用户通过下载并运行这些文件,可以直观地观察到不同通信技术(如调制解调技术)在实际应用中的表现,以及它们在不同信道条件下的性能。这种方式不仅可以加深对理论知识的理解,还能提升解决实际问题的能力。 资源中的核心文件为“通信原理MATLAB仿真.txt”,这个文件可能包含了整个仿真项目的关键代码、注释说明以及实验步骤等。文件内容可能涵盖了信号的生成、调制、信道编码、噪声添加、信号接收解调等多个环节。此外,它还可能提供了一套完整的仿真实验流程,方便学习者按部就班地进行实验操作,从而实现对整个通信系统的全面仿真和分析。 在使用该资源时,学习者首先需要具备一定的MATLAB操作技能,理解基本的编程概念,以及通信原理的基础知识。在仿真过程中,学习者将逐步学会如何设置仿真实验参数,如何分析仿真实验结果,以及如何根据结果对通信系统进行优化。通过这些仿真实验,可以加深对通信系统抗干扰能力、频谱利用率、数据传输速率等关键性能指标的认识。 值得一提的是,本资源的最新版、最全版本提供了包括但不限于基带传输、频带传输、数字信号处理、多径效应分析等多方面的仿真内容。这些内容覆盖了通信原理教学中的重要知识点,是通信工程专业学生和通信系统设计人员不可或缺的学习和参考资料。 通信原理的深入研究对于促进无线通信技术的创新和发展具有不可替代的作用。而基于MATLAB的仿真技术则为这一研究提供了强有力的工具,使得复杂的数学模型和算法能够在计算机上得以实现和验证。因此,掌握基于MATLAB的通信原理系统仿真是当今通信工程师的必备技能之一。 此外,由于通信系统的复杂性,单一的理论知识往往难以全面掌握系统的实际性能。而通过仿真,则可以在不受实际硬件条件限制的情况下,对系统进行全面深入的研究。因此,本资源为通信原理教学和研究提供了一种新的视角和方法,有助于学习者更加直观地理解通信系统的运作机制,从而在实际工作中设计出更加高效、可靠的通信系统。 基于MATLAB的通信原理系统仿真资源,不仅仅是对通信原理知识的简单应用,更是对通信技术深层次理解的工具。它将通信理论与实践紧密结合,为通信技术的教学、研究和开发提供了有力支持,是通信专业学生、教师及工程师的宝贵财富。
2025-12-26 13:04:30 264B 通信原理 MATLAB仿真
1
内容概要:本文详细介绍了基于扰动观测器的伺服系统摩擦补偿Matlab仿真研究。首先,模型基于永磁同步电机的速度、电流双闭环控制结构,采用PI控制并调优参数。仿真中包含了抗饱和PI控制器、摩擦力模型(特别是LuGre模型)、扰动观测器、坐标变换、SVPWM和逆变器等模块,所有关键模块均通过Matlab function编程实现,便于实物移植。仿真采用离散化方法,更贴近实际数字控制系统。其次,文章解释了摩擦力对系统响应的影响,并通过扰动观测器进行实时观测和补偿,显著提高了系统的响应速度和稳定性。最后,通过对比实验数据,验证了摩擦补偿的有效性,展示了系统在有无补偿情况下的不同表现。 适合人群:从事伺服系统设计、控制工程、自动化领域的研究人员和技术人员,尤其是那些希望深入了解摩擦补偿技术和Matlab仿真的专业人士。 使用场景及目标:适用于需要提高伺服系统响应速度和稳定性的应用场景,特别是在存在摩擦力干扰的情况下。目标是通过仿真研究,掌握摩擦补偿的具体实现方法,优化实际系统的性能。 其他说明:文中还提供了相关算法的参考文献,帮助读者快速获取背景知识,减少文献查阅的时间成本。此外,模型已搭建完毕,原则上不再进行修改,确保了仿真结果的一致性和可靠性。
2025-12-23 11:05:46 388KB
1
基于MATLAB的Buck-Boost升压-降压式变换器系统设计,旨在实现从20V输入到10~40V输出的稳定高效电源转换。文中首先明确了设计要求,即输入为20V直流电压,输出电压范围为10~40V,纹波电压为0.2%,电感电流连续,开关频率为20kHz,负载为10Ω。接着,在MATLAB Simulink环境中建立了Buck-Boost变换器模型,并通过理论计算和仿真验证选择了合适的电感、电容及MOSFET等元件参数。随后展示了部分仿真程序代码,解释了如何通过调整控制逻辑中的参数实现电感电流连续性和输出电压调节。最后对仿真结果进行了分析,确保输出电压符合预期,纹波电压在规定范围内,电感电流保持连续。并提出了未来优化方向,如改进控制算法以提升效率。 适合人群:从事电力电子领域的研究人员和技术人员,尤其是对DC-DC变换器设计感兴趣的读者。 使用场景及目标:适用于需要深入了解Buck-Boost变换器设计原理及其MATLAB仿真方法的研究人员或工程师,帮助他们掌握相关技术和工具的应用技巧。 其他说明:本文不仅提供了详细的理论分析,还附带了完整的仿真程序代码,便于读者动手实践和深入研究。
2025-12-18 16:52:28 970KB 电力电子 MATLAB
1
在当今的航天科技领域中,空间机械臂扮演着极其重要的角色,其主要应用包括在轨卫星的建造、维修、升级,以及对太空站的辅助操作等。空间机械臂能够在无重力环境中自由漂浮移动,这给其设计和控制带来了极大的挑战。本篇知识内容将详细介绍Matlab Simulink环境下开发的空间机械臂仿真程序,包括动力学模型、PD控制策略以及仿真结果,特别适用于需要进行二次开发学习的科研人员和工程师。 空间机械臂仿真程序的设计需要考虑空间机械臂在实际工作中的物理特性,包括其质量分布、关节特性、力与运动的传递机制等。动力学模型是仿真程序的核心,它能够模拟机械臂在受到外力作用时的运动状态。在Matlab Simulink中,用户可以构建精确的机械臂模型,包括各关节的动态方程,以及与环境的交互关系。 接下来,PD控制策略是实现空间机械臂精准定位和运动控制的关键技术。PD控制,即比例-微分控制,是一种常见的反馈控制方式,它根据系统的当前状态与期望状态之间的差异来进行调节。在机械臂控制系统中,PD控制器通常被用来处理误差信号,使得机械臂的关节能够达到预定的位置和速度。仿真程序中的PD控制器需要通过细致的调试来优化性能,确保机械臂能够准确地跟踪预定轨迹。 仿真结果是评估仿真程序和控制策略是否成功的直接指标。通过Matlab Simulink的仿真界面,研究人员可以直观地观察到空间机械臂的运动过程,包括机械臂的位移、速度和加速度等参数。此外,仿真结果还可以用来分析系统的稳定性和鲁棒性,为后续的研究提供有价值的参考数据。 对于二次开发学习,该仿真程序提供了极大的便利。二次开发者可以基于现有的程序框架,通过修改或添加新的功能模块来实现特定的研究目标。例如,可以尝试使用不同的控制算法,如模糊控制、神经网络控制等,来提高控制性能;或者修改机械臂的物理参数,研究不同工况下机械臂的运动特性。这种灵活性使得该仿真程序不仅是一个研究工具,更是一个教学平台,为培养空间机器人控制领域的科研人才提供了有力支持。 本仿真程序为研究和开发空间机械臂提供了一个高效、直观的平台。通过对空间机械臂的动力学模型和控制策略的深入研究,结合仿真结果的分析,能够有效地指导实际的空间任务,推动空间技术的发展。同时,该程序也为相关领域的教育和人才培养提供了宝贵的资源。
2025-12-18 10:15:32 3.1MB 数据仓库
1