基于二阶卡尔曼滤波算法的锂电池SOC精准估计研究——赵佳美模型复现及仿真验证,二阶EKF锂电池SOC估计技术的研究与复现——基于建模与仿真的优化策略,基于二阶EKF的锂电池SOC估计研究--赵佳美---lunwen复现。 参考了基于二阶EKF的锂离子电池soc估计的建模与仿真,构建了simulink仿真模型、一阶EKF和二阶EKF。 二阶卡尔曼滤波效果优异 ,基于二阶EKF的锂电池SOC估计; 一阶EKF与二阶EKF; Simulink仿真模型; 锂离子电池SOC估计建模与仿真; 二阶卡尔曼滤波效果。,二阶卡尔曼滤波在锂离子电池SOC估计中的应用研究
2025-07-07 14:47:37 327KB 哈希算法
1
内容概要:MAX32555是一款由Maxim Integrated公司开发的安全SOC(System on Chip),主要用于嵌入式系统和安全应用。该用户指南详细介绍了MAX32555的硬件架构、内存映射、数字外设、系统控制寄存器、时钟与复位管理、电源管理模式、中断机制、指令缓存控制器、调试接口、GPIO引脚配置、ADC操作、加密加速器、I2C协议、磁条读卡器以及USB接口等功能模块。特别强调了STANDBY模式的进入和退出流程,包括通过USB事件、RTC报警或外部唤醒事件(如GPIO引脚)来激活和退出低功耗状态。此外,还提供了详细的寄存器描述和编程指南,确保开发者能够充分利用MAX32555的安全特性和低功耗优势。 适合人群:具备一定硬件开发经验的嵌入式系统工程师和技术人员,尤其是那些需要深入了解SOC内部结构和工作机制的专业人士。 使用场景及目标:① 设计和开发基于MAX32555的安全嵌入式系统;② 实现高效的电源管理和低功耗优化;③ 掌握如何配置和使用各种外设和接口,如GPIO、ADC、加密加速器、I2C和USB等;④ 学习如何处理中断和服务于不同的应用场景,例如通过USB远程唤醒或RTC报警来触发系统恢复。 其他说明:由于MA
2025-07-05 14:34:19 5.4MB 嵌入式系统 用户手册 安全芯片
1
多轴联动运动控制卡在运动控制领域有着广泛的应用。该运动控制卡是一种基于SoC FPGA芯片, 采用以太网通信的运动控制卡。该卡采用单芯片设计方案,结构简单、通用性好、可靠性高,可以控制4个步进电机系统或交流伺服电机系统实现高速、高精度运动,具备自动加减速控制功能,使用成本较传统运动控制卡降低30%以上。通过在木工雕刻机和点胶机设备上的应用, 验证了该运动控制卡的功能和性能。 标题中的“基于SmartFusion2 SoC FPGA芯片的运动控制卡设计”指的是一项创新的运动控制技术,它利用了Microsemi公司的SmartFusion2系统级芯片(SoC)现场可编程门阵列(FPGA)来构建一个高效、低成本且高可靠性的运动控制卡。SmartFusion2 SoC FPGA结合了FPGA的灵活性与微控制器单元(MCU)的处理能力,内置了ARM Cortex-M3处理器核心,使得该设计能够集成复杂的硬件加速器和实时控制功能。 描述中提到,这种运动控制卡采用了以太网通信,替代了传统的PC+NC架构中PC104或PCI接口,简化了设计并降低了成本。它能控制4个步进电机或交流伺服电机,提供高速、高精度的运动,并具有自动加减速控制功能。这种设计在木工雕刻机和点胶机等设备上得到了验证,证明其功能和性能优越,成本比传统运动控制卡降低了30%以上。 文章的部分内容揭示了系统组成结构,运动控制卡主要由PC主机和运动控制卡两部分构成,两者之间通过以太网进行通信。运动控制卡内部包含了PWM脉冲输出、脉冲计数、输入输出逻辑控制、模拟量输出控制以及串口通信等多种功能。而PC主机则负责人机交互界面和编程语言解析等任务。系统结构的简化使得安装和维护更加便捷,降低了现场使用的复杂度。 SmartFusion2 SoC FPGA芯片的优势在于,它的单芯片解决方案降低了硬件的复杂性,提高了系统的可靠性。Cortex-M3内核用于执行控制逻辑和高级计算任务,FPGA部分则可以定制化实现特定的信号处理和实时控制任务。此外,使用以太网通信不仅提供了高速的数据传输能力,还简化了布线,使得控制卡可以放置在用户设备的电控柜中,减少了电缆的混乱。 总结来说,这篇文章介绍了一种基于SmartFusion2 SoC FPGA的运动控制卡设计,该设计实现了高性能、低成本和高可靠性,尤其适合于木工雕刻机、点胶机等需要简易操作和低成本的工业应用。通过集成Cortex-M3处理器和FPGA,实现了运动控制的智能化和灵活性,同时以太网通信优化了系统架构,降低了系统成本和维护难度。这种创新的运动控制方案为工业自动化领域提供了新的选择,推动了运动控制技术的发展。
2025-06-24 16:23:04 1.64MB FPGA; Cortex-M3
1
MATLAB Simulink主动均衡电路模型:汽车级锂电池动力模组模糊控制策略学习版(基于Buck-boost电路与SOC差值、均值及双值比较),MATLAB-simulink主动均衡电路模型 模糊控制 #汽车级锂电池 动力锂电池模组(16节电芯) 主动均衡电路:Buck-boost电路 均衡对象:SOC 控制策略:差值比较 均值比较 双值比较 模糊控制 可调整充电电流 与放电电流 且仅供参考学习 版本2020b ,MATLAB; Simulink; 主动均衡电路模型; 模糊控制; 汽车级锂电池; 动力锂电池模组; Buck-boost电路; 均衡对象SOC; 控制策略; 充电电流; 放电电流; 版本2020b,基于MATLAB Simulink的汽车级锂电池主动均衡电路模型研究:模糊控制策略与实践(2020b版)
2025-06-22 21:04:57 989KB xbox
1
基于DP动态规划的全局最优能量管理策略:ECVT构型车辆电量维持型电池SOC管理策略与算法开发研究,基于DP动态规划的全局最优能量管理策略——ECVT车辆构型与电量维持型电池SOC策略,基于DP动态规划的全局最优能量管理策略,程序为MATLAB m编程完成,大约700行左右。 1.车辆构型为功率分流型(ECVT),类似丰田Pruis构型。 2.电池SOC为电量维持型策略。 3.全程序包含逆向迭代和正向寻优过程。 4.DP作为基于优化的整车能量管理策略的基础,对后续ECMS能量管理策略和MPC能量管理策略的开发学习有着重要作用,可以在此程序基础上进行更改和延伸。 ,基于DP的动态规划; 全局最优能量管理策略; MATLAB m编程; 功率分流型车辆构型(ECVT); 丰田Pruis构型; 电池SOC电量维持策略; 逆向迭代与正向寻优过程; 优化整车能量管理; ECMS与MPC能量管理策略基础。,基于DP算法的功率分流型车辆全局能量管理策略:逆向迭代与正向寻优的MATLAB m程序实现
2025-06-17 09:09:03 1.77MB 数据结构
1
内容概要:本文介绍了利用遗忘因子递推最小二乘(FFRLS)和扩展卡尔曼滤波(EKF)进行锂电池荷电状态(SOC)联合估计的方法。首先,FFRLS用于在线辨识电池模型参数,如极化电阻和电容,通过引入遗忘因子使旧数据权重逐渐衰减,从而提高参数辨识的准确性。接着,EKF用于处理SOC的非线性估计,结合辨识得到的参数,通过状态预测和更新步骤实现精确的SOC估计。文中详细解释了算法的具体实现步骤,包括矩阵运算、雅可比矩阵计算以及参数初始化等问题。此外,还讨论了低温环境下算法的表现优化措施,如动态调整遗忘因子和加入参数变化率约束。 适合人群:从事电池管理系统研究和开发的技术人员,尤其是对锂电池SOC估计感兴趣的工程师和研究人员。 使用场景及目标:适用于需要精确估计锂电池SOC的应用场景,如电动汽车、储能系统等。主要目标是提高SOC估计的精度,减少误差,特别是在极端温度条件下。 其他说明:文中提供了详细的代码实现和参考文献,帮助读者更好地理解和应用该算法。建议读者结合实际数据进行调试和验证,确保算法的有效性和稳定性。
2025-05-17 13:37:38 1.22MB
1
标题《B4860 soc芯片 datasheet》涉及的是一份半导体芯片的数据手册,这份手册归属于Freescale公司(现为NXP Semiconductors的一部分)。这份数据手册详细介绍了B4860这款SOC(System On Chip)芯片的特点、模块功能和性能参数。 知识点1:Freescale B4860 SOC芯片 B4860 SOC芯片是Freescale公司设计的一款集成了多种功能的处理器,支持Baseband(基带)处理。它拥有多种核心处理器和加速引擎,以适应高性能计算需求。基带处理器主要用于无线通信中,如手机和数据卡等设备的信号处理。 知识点2:处理器核心特性 B4860芯片内含双线程的e6500核心以及缓存记忆体复合体,支持高性能的并行处理。此外,它还包含StarCore SC3900 FPFVP核心和集群,以及Multi-Accelerator Platform Engine for Baseband(MAPLE-B3),这些都是为了提高基带信号处理的性能而设计的。MAPLE-B3是专为基带处理设计的多加速器平台引擎,用于提升无线通信系统的信号处理速度和效率。 知识点3:数据路径加速架构(DPAA) DPAA是B4860芯片中用于提高数据处理效率的架构,支持数据在不同处理单元之间的快速流动。DPAA通过编程模型提供了一套简化的方式来配置数据流,有助于开发人员更容易地实现高效数据传输。DPAA的关键组件包括Frame Manager(FMan)、Queue Manager(QMan)、Buffer Manager(BMan)和Security Engine,分别负责帧管理、队列管理、缓冲区管理和安全功能。 知识点4:中断处理和核心通信 B4860芯片具备有效的中断处理机制,它能够快速响应不同的处理需求,并且支持核心间的通信,这允许芯片中不同的处理器核心之间进行快速的信息交换。 知识点5:内存复合体 该芯片的内存复合体支持DDR内存控制器,负责管理主内存。同时,它还含有内存保护机制来确保系统安全,以及e6500/SC3900FPFVP MMU(Memory Management Unit,内存管理单元)和嵌入式虚拟机管理程序(Hypervisor)。MMU对内存地址进行转换,管理虚拟内存,而Hypervisor则用于创建和运行虚拟机,提高资源的利用率和系统的隔离性。 知识点6:外围访问管理单元(PAMU) PAMU是B4860芯片中用于管理外围设备访问权限的单元,它确保了外围设备的访问控制,提高了系统的安全性。 知识点7:高速外围接口复合体 B4860芯片提供高速外围接口支持,包括以太网、Serial RapidIO、PCI Express控制器和Common Public Radio Interface (CPRI)控制器。这些接口使得B4860可以与外部设备实现高速数据交换。同时,芯片还包含用于调试支持的Aurora接口。 知识点8:系统外围设备 B4860芯片提供了标准的系统外围设备支持,包括USB 2.0、增强型串行外设接口(eSPI)、双UART(DUART)和增强型SD主控制器等,这些接口为芯片提供了广泛的应用场景支持。 结合以上知识点,可以对B4860 SOC芯片的性能、架构和应用有一个全面的理解。这份数据手册为开发者提供了必要的信息,以便他们能够充分利用B4860芯片的特性来开发高性能的通信设备。
2025-05-09 14:02:38 25.38MB freescale soc芯片
1
简介: 1、原装进口nRF52840射频芯片。 2、支持蓝牙4.2和5.0协议。 3、芯片自带高性能ARM CORTEX-M4F内核。 4、四层高性能PCB板,射频特性优异,可以通过各种认证。 5、模块引出了大部分的IO口。 6、模块出厂无程序,用户需要进行二次开发。 7、模块自带32.768K实时时钟。 芯片方案:nRF52840 载波频率:2.360~2.500GHz 支持协议:BLE 4.2/5.0 通信距离:120m 通信接口:I/O 性能参数:
2025-05-06 08:13:48 18.3MB 射频模块 电路方案
1
《Simulink仿真模型复现:锂离子电池SOC主动均衡控制策略研究与实现》,锂离子电池SOC主动均衡控制仿真模型的硕士论文复现:基于差值、均值和标准差的均衡算法研究与应用,Simulink锂离子电池SOC主动均衡控制仿真模型 硕士lunwen复现 锂离子电池组SOC均衡,多电池组均衡控制,双向反激变器均衡, 硕士lunwen复现,均衡算法基于差值、均值和标准差 有防止过放和过充环节 附参考的硕士lunwen“锂离子电池SOC估算与主动均衡策略研究” 默认2016版本。 ,锂离子电池SOC; 主动均衡控制; 仿真模型; 硕士论文复现; 均衡算法; 差值均衡; 均值均衡; 标准差均衡; 防止过放过充; 2016版本。,基于Simulink的锂离子电池SOC主动均衡控制模型复现:差值、均值与标准差均衡算法研究与应用
2025-05-03 22:19:05 82KB ajax
1
Battery-2rc_SOC_安时积分法估算SOC使用matlabsimulink打开该模型使用安时积分法估算SOC,二阶RC模型
2025-04-22 17:11:56 651KB
1