ZE08-CH20型电化学甲醛模组是一个通用型、小型化模组,利用电化学原理对空气中存在CH20(甲醒)进行探测,具有良好的选择性,稳定性。内置温度传感器,可进行温度补偿;同时具有数字输出与模拟电压输出,方便使用。ZE08-CH20传感器模块是将成熟的电化学检测技术与精良的电路设计紧密结合,设计制造出的通用型气体模组。 基于STM32F407的代码,串口(UART)读取模式,主动上传模式和问答模式皆有, 自己写的,亲测可行,代码也可以移植到其他STM32
2025-04-16 13:41:09 11.46MB stm32 甲醛传感器
1
在当今工业自动化领域,Modbus协议以其简单、开放、可靠等特点,被广泛应用于各种设备之间的通信。它支持多种传输模式,其中RTU(Remote Terminal Unit)模式是最常见的一种,适合于串行通信。STM32作为ST公司推出的一款广泛使用的32位ARM Cortex-M系列微控制器,通过其内置的UART(Universal Asynchronous Receiver/Transmitter)功能,可以方便地实现Modbus RTU通信协议,从而实现主控制器与多个从设备之间的数据交换。 在本内容中,将详细探讨STM32微控制器如何作为Modbus RTU模式的主机,来控制和管理一系列从设备。我们将重点关注以下几个方面: 1. STM32与UART的配置:首先需要了解STM32微控制器如何配置UART接口,包括波特率、数据位、停止位和校验位的设置,这些都是实现Modbus RTU通信的基础。 2. Modbus协议基础:在开始编程之前,需要对Modbus RTU协议的基本原理有所了解,包括帧结构、地址域、功能码、数据域以及校验方式。 3. 编写Modbus RTU主机代码:主要内容包括如何使用STM32的库函数来实现Modbus RTU协议的主机功能,例如发送功能请求、处理响应、异常处理以及重试机制等。 4. modbus.c和modbus.h文件解析:这两个文件是实现Modbus协议的关键代码文件,将对这两个文件中可能包含的函数、结构体和枚举类型进行详细解读。 5. 实例分析:通过实际的代码示例,展示STM32如何通过UART发送Modbus RTU请求帧,接收响应帧,并对响应帧进行解析。 6. 故障诊断和优化:在使用Modbus RTU通信过程中,可能会遇到各种问题,例如通信错误、数据不一致等。这部分内容将提供一些常见的故障诊断方法和性能优化技巧。 7. 总结:将对整个Modbus RTU主机模式的实现过程进行总结,并提出进一步的学习方向和参考资料。 以上内容涵盖了从基础到实践,再到问题解决的全过程,旨在为读者提供一个全面的STM32 Modbus RTU主机模式实现指南。对于那些正在从事工业控制、仪器仪表及自动化设备通信领域工作的工程师来说,这将是一份宝贵的参考资料。
2025-04-15 15:06:37 8KB STM32 UART RS485 MODBUS
1
本资源实现了一个完整的 上位机-STM32-FPGA 多节点协同控制系统,通过UART串口通信协议驱动舵机。系统支持多节点指令转发、动态参数配置与实时状态回传,用户可通过上位机发送指令,经STM32解析后转发至FPGA生成高精度PWM信号,实现舵机角度控制,同时支持数据回环校验与状态监控。
2025-04-12 23:49:36 38.19MB stm32 FPGA UART 舵机驱动
1
PC端通过串口调试助手发送给异步串口接收模块UART_rx.v,完成串并解析后通过wire [7:0] pi_data ;wire pi_flag ;送入同步串口(SSI)发送模块usart_master.v。考虑到同步串口(SSI) 波特率是10Mbps,远大于异步串口波特率是115200bps,因此无需做数据缓存。同步串口参数如表1-1所示,异步串口参数如表1-2所示。开发工具Vivado 2018.3,使用Verilog HDL编写,FPGA器件xc7a100tfgg484。 在现代电子通信系统中,数据传输的接口标准多种多样,而异步串口(UART)和同步串口(SSI)是两种常见的串行通信接口。基于FPGA的RS422异步串口转二线同步串口(SSI)的接口转换工程,是一种利用现场可编程门阵列(FPGA)技术,将低速异步串口通信转换为高速同步串口通信的解决方案。通过这样的转换,可以实现不同通信标准之间的数据互通,对于提升设备的兼容性和扩展性具有重要意义。 在该工程中,使用了Verilog硬件描述语言来编写转换逻辑。Verilog是一种广泛应用于电子系统设计的硬件描述语言,它允许设计者通过文本形式描述数字电路的结构和行为,进而通过EDA工具实现电路设计的仿真和综合。工程中涉及到的关键Verilog文件包括UART接收模块 UART_rx.v 和SSI发送模块 usart_master.v。UART_rx.v 负责接收来自PC端通过串口调试助手发送的异步串口数据,进行串并转换,然后将数据通过特定的信号线pi_data和pi_flag发送给SSI发送模块。SSI发送模块则负责将这些数据通过同步串口发送出去。 在设计中,SSI接口被配置为高速模式,其波特率为10Mbps,而UART接口的波特率为115200bps。由于SSI接口的波特率远大于UART接口,因此在本设计中无需额外的数据缓存。这种速率差异的处理是通过硬件设计中的时序控制和数据流管理来实现的,确保在不丢失数据的前提下,实现快速而稳定的通信。 此外,整个工程是基于Xilinx的Vivado 2018.3开发环境进行开发的,使用的是FPGA器件xc7a100tfgg484。Vivado是一款功能强大的FPGA设计套件,它提供了从设计输入到设备配置的一整套解决方案,能够支持高层次的综合、仿真、时序分析、以及硬件配置等多个环节。xc7a100tfgg484则是Xilinx公司生产的一款Artix-7系列的FPGA器件,具有丰富的逻辑资源和I/O端口,适用于多种应用场景。 在该工程的设计文档中,通常会包括两个接口的参数说明表。表1-1中会详细描述SSI同步串口的工作参数,如波特率、数据位宽、停止位、校验位等,这些参数需要与外部设备的SSI接口参数相匹配。表1-2则会介绍UART异步串口的参数,包括传输速率、帧格式、流控等,这些参数需要与PC端的串口调试助手设置一致。通过这样的参数配置,可以确保数据能够在UART和SSI之间准确无误地传输。 整个工程的实现不仅展示了FPGA在接口转换方面的灵活性和高效性,还体现了在高速和低速通信系统之间进行数据交换时对精确时序控制的需求。此类型项目不仅对于通信系统设计者具有参考价值,对于深入理解FPGA在通信协议转换中的应用也十分有益。
2025-04-10 10:45:08 2.3MB FPGA verilog
1
基于FPGA的Cortex-M3 MCU系统:带AHB APB总线与UART硬件RTL源码,支持ARMGCC与SWD仿真调试,扩展功能丰富的MCU开发平台(暂不含DMA和高级定时器),基于FPGA的Cortex-M3 MCU系统:RTL源码工程,含AHB APB总线、UART串口、四通道定时器,配套仿真与驱动,可扩展用户程序与IP调试功能(非DMA和高级定时器版本),FPGA上实现的cortex-m3的mcu的RTL源码,加AHB APB总线以及uart的硬件RTL源代码工程 使用了cortex-m3模型的mcu系统,包含ahb和apb总线,sram,uart,四通道基本定时器,可以跑armgcc编译的程序。 带有swd的仿真模型。 可以使用vcs进行swd仿真读写指定地址或寄存器。 带有的串口uart rtl代码,使用同步设计,不带流控。 带有配套的firmware驱动,可以实现收发数据的功能。 带有的四通道基本定时器,可以实现定时中断,具有自动reload和单次两种模式。 用于反馈环路实现、freertos和lwip等时基使用。 暂时不包括架构图中的DMA,高级定时器和以太网,后期
2025-04-02 15:33:06 11.35MB 柔性数组
1
VIVADO中UART IP核 使用的是AXI-lite通信协议,外部接口分别为RX、TX以及Interrupt。该工程中使用了UART IP核,并且写了AXI-Lite mater部分代码实现UART IP核通信,在tb文件中写了UART rtl代码,可实现IP核与代码直接的发送接收。代码可直接进行仿真。
2025-02-11 17:30:30 35.59MB vivado fpga uart通信
1
EFM32(Energy Micro EFM32)是一款由Silicon Labs公司开发的微控制器系列,以其低功耗性能和丰富的外设集而受到广泛应用。本文将深入探讨EFM32微控制器的boot升级过程,特别是在使用IAR Embedded Workbench集成开发环境(IDE)时的情况。IAR是一个强大的C/C++编译器和调试工具,适用于多种嵌入式系统,包括EFM32。 EFM32的Bootloader是微控制器在上电或复位后执行的第一段代码,它负责加载应用程序到内存并启动执行。Bootloader在固件更新、错误恢复和系统初始化等方面扮演关键角色。官方提供的bootloader demo是一个参考实现,可以帮助开发者理解如何设计和实现一个安全可靠的升级流程。 UART(通用异步接收/发送)是微控制器常用的一种串行通信接口,用于设备之间的数据传输。在EFM32的boot升级过程中,UART常被用作与外部设备(如PC)通信的通道,传输新的应用程序代码。开发者需要配置UART的波特率、数据位、停止位和奇偶校验等参数,确保通信的稳定性和可靠性。 在IAR版本的boot升级过程中,首先需要在IAR Embedded Workbench中编写和编译bootloader代码,确保其能够正确识别和处理接收到的升级数据。然后,开发者需要创建一个应用项目,编写应用程序代码,并将其编译成可执行文件。这个可执行文件将在bootloader成功接收后被加载到EFM32的闪存中。 在boot升级流程中,安全是至关重要的。为了防止非法或损坏的固件被加载,bootloader通常会进行完整性检查,例如计算校验和或使用数字签名技术。此外,bootloader还应包含故障恢复机制,如在升级失败时能够回滚到已知良好的旧版本固件。 在实际操作中,开发者通常会利用专用的固件更新工具或编程器通过UART接口与EFM32进行交互,将新的应用程序文件发送给微控制器。这个过程中可能涉及到的文件格式有HEX、BIN或ELF,它们是不同类型的二进制文件,用于存储编译后的机器码。 总结来说,EFM32的boot升级过程涉及bootloader的设计、IAR IDE的使用、UART通信的配置以及固件安全性的考虑。理解并掌握这些知识点对于开发和维护基于EFM32的嵌入式系统至关重要。通过官方提供的bootloader demo和IAR Embedded Workbench,开发者可以更加高效地实现固件的更新和系统维护。
2024-12-26 17:50:10 748KB EFM32 BOOT uart app
1
标题中的“中颖最新afe,367601”指的是中颖电子推出的新型AFE(Analog Front End,模拟前端)芯片,型号为367601。AFE芯片在电子设备中通常用于处理模拟信号,它集成了多种模拟电路功能,如ADC(模拟数字转换器)、DAC(数字模拟转换器)、滤波器等,以便于系统对模拟信号的采集、处理和输出。 描述中提到的“使用uart和afe通信”是指通过UART(通用异步收发传输器)接口与AFE芯片进行通信。UART是一种简单且广泛使用的串行通信协议,用于设备间的双向数据传输。在这里,它作为单片机(如SH79F6441)与AFE芯片367601之间的通讯桥梁,使得开发者可以轻松控制AFE的参数设置和数据读取,简化了开发流程。 标签中的“网络”可能指的是AFE芯片或单片机在物联网应用中的网络连接能力,这可能意味着该芯片或解决方案支持TCP/IP协议栈或其他网络协议,以实现远程数据传输和控制。 “单片机”是微控制器的另一种称呼,它是一个集成的集成电路,包含CPU、内存、定时器/计数器以及输入/输出接口等,常用于嵌入式系统中。描述中提到“本人熟悉各种单片机开发”,暗示了提供者具有丰富的单片机编程和应用经验,能够帮助客户解决基于单片机的系统设计问题。 压缩包内的文件名称“SH3676016B+SH79F6441一线通方案DemoCode_V1.0_20230301”揭示了一个具体的开发方案,其中包括了AFE芯片SH367601和单片机SH79F6441的“一线通”(可能指的是UART通信)示例代码。这个版本号为V1.0的DemoCode应该是2023年3月1日发布的,包含了实现UART通信的基本代码和配置示例,供开发者参考和使用。 综合以上信息,我们可以理解这是一个关于中颖电子AFE芯片367601与单片机SH79F6441通过UART通信的开发方案。该方案可能涵盖了AFE的初始化、数据交换、错误处理等方面,适用于需要高性能模拟信号处理和网络功能的嵌入式系统设计。对于开发者来说,通过提供的DemoCode,他们可以快速理解和实现AFE与单片机间的通信,从而加速项目开发进程。同时,由于提供者表示愿意交流并指导客户开发,这表明他们可能还提供技术支持和服务,帮助客户解决实际开发过程中遇到的问题。
2024-12-11 14:30:16 1.93MB 网络 网络
1
双击运行安装驱动即可识别USB串口设备
2024-11-07 14:11:33 2.11MB
1
演示是在STM32F103CBT6上构建的,但是您可以用STM32CubeMX移植它们。 设置I0I1: I0 ->低 I1 ->高 硬件连接: SCK - > PA5 SDK- > PA6 MOSI - > PA7 NSS - > PA4 PA9 - > RX PA10 - > TX 摘录:pn 532-lib \ examples \ STM 32 \ STM 32.7 z 使用Keil V5打开项目MDK-ARM\pn532_stm32.uvprojx 构建项目并下载到您的STM32板上。
2024-11-04 20:21:20 3.93MB STM32 PN532
1