可变自动编码器 文章中的器模型的实现。 模型在MNIST数据上进行了测试。 生成数字的示例 要求 张量流> 2 麻木 matplotlib
2022-12-21 19:56:47 42KB vae variational-autoencoder tensorflow2 Python
1
1.自编码器简介,包括(1.1什么是自编码器,1.2自编码器有什么用,1.3怎样构建自编码器,1.4自编码器及其变体) 2.稀疏自编码器(SAE),包括(2.1为什么要有稀疏自编码器,2.2稀疏自编码器介绍,2.3稀疏自编码器原理,2.4与自编码器的区别) 3.收缩自编码器(CAE),包括(3.1 预备知识,3.2 CAE目标,3.3 CAE构造) 4.去噪自编码器(DAE),包括(4.1什么是去噪自编码器,4.2去噪自编码器的结构) 5.变分自编码器(VAE),包括(5.1为什么用变分自编码器,5.2变分自编码器的结构)
2022-11-22 20:26:23 5.22MB Auto-encoding 深度学习 人工智能
1
手把手实现VAE(pytorch)
2022-11-09 16:26:11 243KB pytorch VAE 深度学习
1
VAE总结 VAE的本质是什么?VAE虽然也称是AE(AutoEncoder)的一种,但它的做法(或者说它对网络的诠释)是别具一格的。在VAE中,它的Encoder有两个,一个用来计算均值,一个用来计算方差,让人意外:Encoder不是用来Encode的,是用来算均值和方差的;此外均值和方差都是统计量,这里是用神经网络来计算。 事实上,VAE本质上就是在我们常规的自编码器的基础上,对encoder的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”,使得结果decoder能够对噪声有鲁棒性;而那个额外的KL loss(目的是让均值为0,方差为1),事实上就是相当于对encoder的一个正则项,希望encoder出来的东西均有零均值。 另外一个encoder(对应着计算方差的网络)的作用用来动态调节噪声的强度的。直觉上来想,当decoder还没有训练好时(重构误差远大于KL loss),就会适当降低噪声(KL loss增加),使得拟合起来容易一些(重构误差开始下降);反之,如果decoder训练得还不错时(重构误差小于KL loss),这时候噪声就会增加(KL loss减少),使得拟合更加困难了(重构误差又开始增加),这时候decoder就要想办法提高它的生成能力了。两者是对抗的过程。重构损失希望p(Z|X)的方差越小越好(噪声越小,重构越容易),KL损失希望它的方差越接近1越好。
2022-10-04 15:45:06 7.96MB 自编码器 变分自编码器
1
vae_lightning 具有PyTorch Lightning的变体自动编码器
2022-09-07 15:56:54 2KB
1
我的VAE可视化项目对应的pth及npy文件,大家根据需要下载。或者有资源的话自己跑程序训练也行。 可以自己训练不用下载,或者送给我点积分也行。
2022-07-27 20:05:20 3.05MB 博客附属文件 VAE 可视化
1
# Pytorch实现VAE变分自动编码器生成MNIST手写数字图像 1. VAE模型的Pytorch源码,训练后其解码器就是生成模型; 2. 在MNIST数据集上训练了50个epochs,训练过程的生成效果放在result文件夹下,训练后的模型保存为model.pth,可用于生成新的手写数字图像; 3. 训练代码会自动下载MNIST数据集,运行代码即可自行训练。
2022-06-11 11:06:27 5.53MB pytorch vae 变分自动编码器 手写数字
VAE Tacotron-2: 非官方实现 仓库结构: Tacotron-2 ├── datasets ├── LJSpeech-1.1 (0) │   └── wavs ├── logs-Tacotron (2) │   ├── mel-spectrograms │   ├── plots │   ├── pretrained │   └── wavs ├── papers ├── tacotron │   ├── models │   └── utils ├── tacotron_output (3) │   ├── eval │   ├── gta │   ├── logs-eval │   │   ├── plots │   │   └── wavs │   └── natural └── training_data (1)    ├── audio    └── mels
1
VAE-火炬 VAE和CVAE的Pytorch实施 VAE 为了生成某些东西,例如我们的mnist位数,我们需要找到mnist $ P(X)$的真实分布。 如果找到了,那么我们需要做的就是从$ P(X)$中抽取样本,然后完成所有操作。 但是,我们无法获得$ P(X)$,因此VAE会使用潜在变量来近似$ P(X)$。 $$ P(X)= \ int P(x | z)P(z)$$然后,我们要做的就是从z采样,并使用$ P(x | z)$生成x。 为了训练该$ P(x | z)$并找到合适的Z,我们将定义$ P(z | x)$。 $$ P(Z)= \ int P(z | x)P(x)$$此外,为了进行采样,VAE在$ P(z | x)$上施加了一些约束,并使其成为正态分布$ N(0,1)$。 然后我们有$$ P(Z)= \ int P(z | x)P(x)= N(0,1)\ int P(x\uff09=
2022-05-03 16:49:00 65.46MB Python
1