健身搏击 使用OpenAI环境工具包的战舰环境。 基本 制作并初始化环境: import gym import gym_battleship env = gym.make('battleship-v0') env.reset() 获取动作空间和观察空间: ACTION_SPACE = env.action_space.n OBSERVATION_SPACE = env.observation_space.shape[0] 运行一个随机代理: for i in range(10): env.step(env.action_space.sample()) 观察隐藏的游戏状态: print(env.board_generated) 有效动作 有两种输入动作的方法。 第一种方法是按原样输入元组: env = gym.make('battleship-v0') env.reset(
1
2048健身房 该存储库是一个有关使用DQN(Q-Learning)玩2048游戏并使用加速和加速环境的。使用的算法来自“ ,环境是自定义的 env。该环境包含两种类型的电路板表示形式:二进制和无二进制。第一个使用幂二矩阵来表示电路板的每个图块。相反,没有二进制文件使用原始矩阵板。 该模型使用两种不同类型的神经网络:CNN(卷积神经网络),MLP(多层感知器)。使用CNN作为特征提取器比使用MLP更好。可能是因为CNN可以提取空间特征。结果,代理在1000个已玩游戏的10%中获得2048个图块。 奥图纳 Optuna是一个自动超参数优化软件框架,专门为机器学习而设计。它具有命令式,按运行定义样式的用户API。多亏了我们的运行定义API,用Optuna编写的代码具有高度的模块化,并且Optuna的用户可以动态构造超参数的搜索空间。 还有就是如何使用这个库指南。 Numba 是一种开源JI
1
用pytorch在Gym的游戏中实现Deep-Q-network深度强化学习,实时查看训练效果。 非常适合新手入门学习!!!
2022-11-04 15:05:55 242KB 强化学习
1
ddpg-aigym 深度确定性策略梯度 Tensorflow中深度确定性策略梯度算法的实现(Lillicrap等人 。) 如何使用 git clone https://github.com/stevenpjg/ddpg-aigym.git cd ddpg-aigym python main.py 培训期间 一旦训练 学习曲线 InvertedPendulum-v1环境的学习曲线。 依存关系 Tensorflow(在tensorflow版本0.11.0rc0 ) OpenAi体育馆 Mujoco 产品特点 批量归一化(提高学习速度) 梯度转换器(在arXiv中提供: ) 注意 使用不同
1
gym-master官方文件
2022-05-31 09:04:17 837KB github
1
使用gym环境时报错:AttributeError: module ‘gym.envs.box2d’ has no attribute ‘BipedalWalker’,则需要下载Box2D库,详情可参见博客:https://blog.csdn.net/qq_43010516/article/details/124801637
2022-05-16 21:05:41 1.18MB 源码软件 python 开发语言
1
安装Box2D时可能报错需要安装swig安装包,详情可参见博客:https://blog.csdn.net/qq_43010516/article/details/124801637
2022-05-16 21:05:41 11.07MB 综合资源
1
可用于UnityVR开发,3D游戏开发,高清天空盒子Skybox素材,游戏环境背景素材,无水印。 让你身临其境的天空盒子,各类题材丰富,都是辛苦搜罗所得的高清exr格式,可以直接用于Unity开发,特别是VR游戏的开发。 内景、外景、城市、乡间、日出,夜晚,欧式宫殿,中式园林,应有尽有,可以在我的下载频道选择需要的下载。 注意,由于是高清,所以体积较大(大的可以达到500M),请下载前预留合适的空间。 使用方法: 1-导入Unity后将图片的Shape转换成cube形式, 2-创建空Material,并转换成Cube/skybox形式, 3-将图片拖入新建的SkyboxMaterial, 4-用刚创建的Material代替项目中原本的系统默认Skybox
2022-05-09 19:16:29 300.56MB vr unity 天空盒子 skybox
GYM
2022-04-26 12:10:00 6.05MB CSS
1
健身房 基于OpenAI Gym的多代理环境的集合。 安装 使用PyPI: pip install ma-gym 直接从来源: git clone https://github.com/koulanurag/ma-gym.git cd ma-gym pip install -e . 参考: 如果您想引用它,请使用此bibtex: @misc{magym, author = {Koul, Anurag}, title = {ma-gym: Collection of multi-agent environments based on OpenAI gym.}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublish
1