MATLAB 人体行为姿态识别,可以识别不同的人体姿势,如行走,卧躺,站立等,从而对这些行为进行预警或者进行运动监测。
2021-11-08 17:02:44 8.74MB matlab行为识别
1
一、课题介绍 本文设计了一款人体行为异常监控系统,主要适用人群是老年人,在摄像头固定的情况下,自动检测人体运动轨迹,并与提前设定好的行为库进行匹配,分析判断是否具有异常行为。 在数字图像预处理部分采用了图像二值化,腐蚀与膨胀等几种方法为人体目标的跟踪和检测做准备。为了克服在实际操作中遇到的问题,采用了帧差法和ViBe算法,帧差法即利用帧间变化与当前帧、背景算法来判断它是否大于阈值,并分析视频中序列的运动特性,ViBe算法则是一种背景建模的方法,背景模型是由邻域像素来创建,并对比背景模型、当前输入像素值检测出前景,确定视频中的目标跟踪。在人体行为识别中,运动目标最小长宽比以及连续帧间的加速度来判断人体行为是否异常,如果检测到异常的行为比如说摔倒、快跑等行为,在识别的过程这种实时监测。
1
基于matlab的人体行为识别。识别人体行为,如行走,站立,蹲坐,伸展手臂等。
1
识别人体行为。如行走,端坐,卧躺等。matlab实现。
1
MATLAB人体行为识别,可以识别动作姿态,行为是否异常。可以导入视频或者图片。带界面GUI。matlab,需要具备一定编程基础。
1
本课题为基于形态学的人体行为检测系统,可以识别卧躺,站立,蹲坐等几种姿势。根据圈定的矩形长宽比例,带有一个GUI可视化界面,程序简单易懂通俗。
1
课题为利用MATLAB的做差法,求出测试图和背景图的人体轮廓,根据人体的躺下,坐下,站立的时候最外接矩形的长宽来判断是什么姿态。带GUI界面。算法是差影法,理解起来很容易。
1
课题为利用MATLAB的做差法,求出测试图和背景图的人体轮廓,根据人体的躺下,坐下,站立的时候最外接矩形的长宽来判断是什么姿态。带GUI界面。算法是差影法,理解起来很容易。
1
本系统为人体异常行为检测系统 本文件夹下共包含12个文件 其中matlab代码文件9个,视频源文件夹1个(内含4个视频),指导视频一个,说明文档一个 其中仅需要打开Main_Test.fig文件,点击运行即可使用
1
一、课题名称: 基于MATLAB的人体行为姿势识别系统 二、算法介绍 本课题采用差影法的方法进行人体姿势的识别。背景差影法的原理就是:我们先在路口固定一个摄像头,将这个摄像头与电脑相连。电脑可以把拍到的车流视频保存,然后人为截取车型图片作为背景差影法处理的对象。这里要注意的是,我们首先要拍摄一张没有任何移动物体或者干扰的背景图,这样我们在进行背景差影法做图像处理时就可以尽量得来最理想的结果。然后,我们把存在背景的车型图和没有任何干扰的背景图做减法,就可以很方便的得到我们需要进行识别的车的一个基本的轮廓图。这个轮廓图才是我们最终需要的用来进行车型识别的核心。图像差分就是对图像进行减法,我们在用背景差影法来是被车型图片的时候,必须要注意到背景随晴雨天、光强度这些随时可能发生变化的条件而该改变。 三、GUI界面设计
1