使用隐马尔可夫模型预测股市(Python完整源码和数据) 隐马尔可夫模型是一种非常有趣的随机过程,在机器学习领域未得到充分利用。 它们对于分析时间序列特别有用。 这与它们将现实世界过程发出的可观察输出转换为可预测和高效模型的能力相结合,使它们成为用于股票市场分析的可行候选者。 股票市场有几个有趣的特性,使建模变得非常重要,即波动性、时间依赖性和其他类似的复杂依赖性。 HMM 适合处理这些复杂情况,因为它们生成模型所需的唯一信息是一组观察结果(在本例中为历史股市数据)。
二手车价格预测 探索具有随机森林和正则化的二手车价格预测模型。 我使用R进行数据可视化,数据插补和模型选择。 涉及的主要软件包是Hmisc,ggplot2,randomForest和glmnet。 我们正在寻求使用随机Forst和正则化技术的特征选择和预测算法。 方法是随机森林,山脊,套索和弹性网回归。 事实证明,弹性模型可以大幅度减少维数,并保持良好的预测能力。
2022-11-28 14:55:20 7KB
1
matlab预测股票价格走势 基于深度学习算法的股票市场价格预测与建模框架 MSE、RMSE、NRMSE和R2值通过在整个测试期间将预测股票收盘价与实际股票收盘价进行比较来确定。然后,我们利用预测数据确定预测日的股价变化范围。这些计算是在MATLAB中进行的,我们使用了MATLAB上的深度学习和金融库。
2022-11-26 19:26:31 8.46MB matlab 预测股票
1
MATLAB实现股票价格预测 源程序代码.zip
2022-11-18 16:28:46 967B matlab 源代码 程序包
【预测模型】时间序列股票价格预测【含Matlab源码 450期】.zip
2022-11-16 19:31:58 99KB
1
kaggle黄金价格预测数据,时间序列数据,可以进行机器学习、深度学习分析
2022-11-11 12:30:05 41KB kaggle 时间序列
1
资源包含文件:设计报告word和pdf两个版本+源码及数据 box-cox 变换目标值“price”,解决长尾分布。 删除与目标值无关的列,例如“SaleID”,“name”。这里可以挖掘一下“name”的长度作为新的特征。 异常点处理,删除训练集特有的数据,例如删除“seller”==1 的值。 缺失值处理,分类特征填充众数,连续特征填充平均值。 其他特别处理,把取值无变化的列删掉。 异常值处理,按照题目要求“power”位于 0~600,因此把“power”>600 的值截断至 600,把"notRepairedDamage"的非数值的值替换为 np.nan,让模型自行处理。 详细介绍参考:https://blog.csdn.net/sheziqiong/article/details/125362504
2022-11-02 14:46:21 1.85MB Python 二手车 价格分析 价格预测
论文研究-基于SSA-ELM的大宗商品价格预测研究.pdf,  随着经济全球化的发展,国际期货市场中各大类大宗商品价格波动剧烈,而全球经济形势不明朗以及货币政策不确定使得大宗商品期货价格难以被准确预测.本文选取玉米,原油,黄金分别作为大宗商品农产品类、能源类、金属类的代表对象,基于奇异谱分析方法(singular spectrum analysis,SSA),对商品期货价格进行分解,结合Kmeans动态聚类技术将分解量聚合成不同特征的价格序列,再采用具有优良特性的极限学习机算法(extreme learning machine,ELM)对模型进行训练,得到大宗商品期货价格预测模型.实证结果表明,采用序列分解聚类策略能够显著提高模型预测精度,在价格未来的整体水平和变动方向上都能达到较好的预测效果.
2022-09-27 19:03:13 1.08MB 论文研究
1
压缩包内含:基于LSTM的股票价格预测_数据+代码+报告,可以最为数据挖掘的大作业。股票作为人民金融投资的普遍方式,如何在股票中赚钱成为股民的共同目标。要想在股票交易中赚钱便要掌握股票的走势,因此股票价格预测工作引起社会及学术界的广泛关注。股票的走势随市场变动,而且受诸多因素影响,如国际环境,政策变化,行业发展,市场情绪等等,这使得股民很难预测股票的走势。理论上,根据股票以往的价格走势,可以预测股票的未来走势。因为股票预测是高度非线性的,这就要预测模型要能够处理非线性问题,并且,股票具有时间序列的特性,因此适合用循环神经网络对股票进行预测。虽然循环神经网络(RNN),允许信息的持久化,然而,一般的RNN模型对具备长记忆性的时间序列数据刻画能力较弱,在时间序列过长的时候,因为存在梯度消散和梯度爆炸现象RNN训练变得非常困难。Hochreiter 和 Schmidhuber 提出的长短期记忆( Long Short-Term Memory,LSTM)模型在RNN结构的基础上进行了改造,从而解决了RNN模型无法刻画时间序列长记忆性的问题。因此,本文基于LSTM实现一个股票价格预测模型。
2022-09-23 13:07:13 1.03MB 数据挖掘 python 机器学习 LSTM
1
化工产品价格预测和管理系统的开发
2022-07-02 09:10:07 4.46MB 文档资料