基于 Skulpt.js 的在线 Python 编程学习网站
2025-11-03 13:35:25 272KB
1
Matlab代码verilog HDL编码器评估参考指南 使用HDL Coder生成VHDL或Verilog来定位FPGA或ASIC硬件的入门指南。 该文件为以下方面提供了实用指南: 设置您的MATLAB算法或Simulink模型以生成HDL代码 如何创建支持HDL的Simulink模型,Stateflow图和MATLAB Function模块 HDL代码生成的技巧和高级技术 针对特定FPGA / SoC目标的代码生成设置,包括AXI接口 转换为定点或利用本机浮点 针对各种目标进行优化 验证生成的代码它还包括一些示例,以说明选定的概念。
2025-11-03 10:53:20 3.15MB 系统开源
1
包络跟踪技术(Envelope Tracking,简称ET)是无线通信领域中一种提高功率放大器(Power Amplifier,PA)效率的重要方法。在当前的移动通信系统中,为了满足高数据速率和低能耗的需求,高效功放设计显得至关重要。本文将深入探讨包络跟踪技术的基本原理、工作机制以及其在不同场景下的应用。 我们来看包络跟踪技术是如何工作的。传统的功率放大器通常在固定电压下工作,这会导致在低功率输出时产生不必要的功率损耗。包络跟踪技术通过动态调整功放输入端的偏置电压(通常是漏极电压),使其与输入信号的包络相匹配。换句话说,当输入信号的幅度增大或减小时,功放的供电电压也随之变化,使得放大器始终能在最佳工作效率点运行,从而减少无效的功率消耗,提高整体的能源效率。 包络跟踪技术的核心组件包括包络检波器和电源调节模块。包络检波器负责从高频信号中提取出包络信息,然后电源调节模块依据这些信息快速调整直流输入电压。这种实时调整的能力使得功放能够在各种功率水平下都保持高效率。 根据电压控制方式的不同,ET功放可以分为以下几类: 1. 宽带包络跟踪功率放大器(Wide Bandwidth ET):适用于宽带信号,电压供给随输入信号瞬时值变化,能实现较高的带宽但对模块设计有较高要求。 2. 平均包络跟踪功率放大器(Average ET):适用于窄带信号,电压供给随输入信号功率时间均值变化,峰值效率高,但不适用于宽带信号。 3. 步进制包络跟踪放大器:电压在预设的几个值之间切换,适用于特定应用场景。 4. 数字控制的ET放大器:结合了数字处理技术,具有更高的灵活性和控制精度,是现代ET功放的发展趋势。 此外,包络跟踪技术对于处理高 Peak-to-Average Power Ratio (PAPR) 的信号特别有用,例如在OFDM(正交频分复用)等通信系统中。高PAPR信号在传统功放中容易导致效率低下,而ET技术则可以显著改善这一问题。 总结来说,包络跟踪技术是一种创新的功率放大器优化手段,通过实时调整供电电压来适应输入信号的动态变化,从而提高功放的效率,降低能耗,尤其适合处理高PAPR信号。随着通信技术的不断发展,ET技术在5G、6G等新一代通信网络中的应用将会更加广泛。
2025-11-03 01:50:06 39KB
1
本资源包含一个端到端的验证码识别深度学习项目,使用Python和TensorFlow/Keras实现。内容涵盖数据集生成、模型设计、训练、测试和优化等过程。 适用人群: 想学习深度学习项目实践的AI工程师、想开发验证码识别产品的企业技术人员 使用场景: 该项目可用于学习实践深度学习开发流程,也可以修改和扩展应用到实际包含验证码的产品中,如注册登录、网站安全等场景。 目标: 通过该项目可以掌握验证码识别任务的深度学习方法,包括数据制作、模型设计、训练和部署。可以进一步应用和扩展到其他视觉识别领域。 其他说明: 项目基于TensorFlow和Keras实现、包含详细的代码注释和使用说明、可以自定义训练模型,也提供了预训练模型、欢迎基于该项目进行改进与探讨
1
c#抖音礼物获取demo(仅供学习交流用)
2025-11-01 09:51:37 164.59MB 抖音
1
1.本项目基于网络开源平台Face++ . API,与Python 网络爬虫技术相结合,实现自动爬取匹配脸型的发型模板作为造型参考,找到最适合用户的发型。项目结合了人脸分析和网络爬虫技术,为用户提供了一个个性化的发型推荐系统。用户可以根据他们的脸型和偏好来寻找最适合的发型,从而更好地满足他们的美容需求。这种项目在美容和时尚领域具有广泛的应用潜力。 2.项目运行环境:包括 Python 环境和Pycharm环境。 3.项目包括4个模块: Face++ . API调用、数据爬取、模型构建、用户界面设计。Face++ . API可检测并定位图片中的人脸,返回高精度的人脸框坐标,只要注册便可获取试用版的API Key,方便调用;通过Selenium+Chrome无头浏览器形式自动滚动爬取网络图片,通过Face++性别识别与脸型检测筛选出用发型模板,图片自动存储指定位置并按性别、脸型序号形式命名。模型构建包括库函数调用、模拟用户面部图片并设定路径、人脸融合。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/132868949
2025-10-31 14:12:44 112.24MB face++ 图像识别 图像处理 人脸识别
1
在这份Python工程中,涉及了数据处理和分析的多个阶段,包括数据清洗、数据分析以及可视化、以及机器学习。数据清洗是数据分析中至关重要的一步,它的目的是去除数据集中的噪声和不一致性,以便进行更为准确的数据分析。Python作为一门强大的编程语言,在数据清洗领域拥有广泛的库和工具支持,其中最常用的就是pandas库。pandas提供了DataFrame和Series两种主要数据结构,能够方便地处理表格型数据,同时还提供了大量的函数和方法来实现数据清洗和处理的各种需求,如缺失值处理、数据类型转换、重复数据处理等。 在数据清洗完成后,项目进入到数据分析和可视化的阶段。数据可视化是将数据分析的结果通过图形的方式直观地展现出来,帮助人们更好地理解数据中的模式和趋势。在Python中,pyecharts是一个用于生成各种图表的库,它基于ECharts,后者是一个由百度团队开发的纯JavaScript图表库,能够在网页中生成美观的图表。pyecharts使得Python用户可以方便地在网页中展示数据分析的结果。在本项目中,特别提到了使用pyecharts生成了堆叠面积图和热力图这两种类型的图表。堆叠面积图适合展示部分与整体的关系以及各类别数据随时间或其他变量的增减变化趋势。而热力图则适合于展示数据矩阵的强度分布,常用于显示变量间的相关性,或是某个量在不同分类条件下的分布情况。 项目还包含了机器学习的部分。机器学习是人工智能的一个分支,它使计算机系统能够通过经验改进自身的性能。在Python中,sklearn库是进行机器学习实践的常用工具包,提供了许多常见的机器学习算法,如分类、回归、聚类等,以及相应的数据预处理、模型选择和评估方法。例如,使用sklearn进行数据集的分割、特征工程、模型训练和参数调优等。joblib是另一个在Python中用于并行计算的库,它主要用于处理大量数据时的并行任务,能够加速数据处理和模型训练过程。 整个工程展示了一个完整的数据分析项目流程,从数据的准备和清洗,到数据的分析和可视化,再到使用机器学习模型对数据进行深入挖掘,每一步都紧密相连,共同构建了一个综合性的数据分析解决方案。
1
在人工智能领域,垃圾短信识别是一个重要的应用方向,旨在通过智能算法识别并过滤掉用户接收到的垃圾短信。随着智能手机的普及,垃圾短信问题日益严重,用户每天都会收到大量无用甚至带有诈骗性质的短信,这些短信不仅打扰人们的正常生活,还可能带来安全隐患。因此,开发一种高准确率的垃圾短信识别模型显得尤为重要。 本项目的核心是一个基于Python语言开发的模型,该模型具有交互界面,能够部署在用户的本地设备上,保证了处理数据的隐私性和安全性。模型训练所依赖的训练集数据也被包含在了提供的压缩文件中,便于用户直接使用和操作。值得注意的是,通过调整模型训练集的大小,用户可以进一步提高垃圾短信的识别准确率。这意味着用户可以根据实际情况,对训练集进行优化,以适应不同类型的垃圾短信特征。 训练集中的数据通常包含大量经过标注的短信样本,其中包含“垃圾短信”和“非垃圾短信”两种标签。模型通过学习这些样本,逐步掌握区分垃圾短信的规则和特征,进而实现对新短信的自动分类。在机器学习领域,这属于监督学习范畴。具体的算法可以是逻辑回归、支持向量机、决策树、随机森林、神经网络等。 在模型的设计与实现过程中,需要考虑多个关键因素。文本预处理是垃圾短信识别的第一步,因为短信内容通常是非结构化的自然语言文本。预处理包括分词、去除停用词、文本向量化等步骤,以便将文本数据转换为模型可以处理的数值形式。特征提取也是模型能否准确识别的关键,有效特征可能包括特定关键词的出现频率、短信长度、发送时间等。 在模型的训练过程中,还需要进行适当的调参,即调整模型的超参数,比如神经网络的层数、每层的神经元数量、学习率、批处理大小等,以达到最佳的训练效果。此外,模型还需要进行交叉验证,以评估模型的泛化能力,确保模型在未知数据上也能有良好的表现。 Python作为一种高级编程语言,在数据科学和机器学习领域具有显著的优势。其丰富的库和框架,如NumPy、Pandas、Scikit-learn、TensorFlow、Keras等,极大地方便了开发者进行数据分析和模型构建。而且,Python的语法简洁明了,易于理解和使用,对于初学者和专业人员都是一个很好的选择。 在实际部署时,可以将模型封装在一个用户友好的交互界面后端,前端可以采用Web界面或桌面应用程序的形式。用户可以通过这个界面上传新的短信样本,查询识别结果,并根据需要调整训练集和模型参数。 本项目通过提供一个基于Python的垃圾短信识别模型,不仅帮助用户有效识别和过滤垃圾短信,还通过交互界面和本地部署的方式,给予了用户高度的自主性和隐私保护。随着机器学习技术的不断发展,未来的垃圾短信识别模型有望更加智能化、高效化,为用户提供更为精准的服务。
2025-10-31 00:02:31 145.47MB 人工智能 机器学习 python
1
在教育技术领域,特别是高等教育和在线学习的背景下,大数据分析、自然语言处理、机器学习、数据可视化、爬虫技术以及文本挖掘与情感分析等技术的应用变得越来越广泛。本项目《基于Python的微博评论数据采集与分析系统》与《针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究》紧密相连,旨在优化线上教育体验,并为疫情期间和之后的在线教育提供数据支持和改进方案。 大数据分析作为一种技术手段,通过收集、处理和分析大量数据集,为教育研究提供了新的视角和方法。在这个项目中,大数据分析被用于梳理和解析疫情前后微博平台上关于大学生在线学习体验的评论数据。通过这种方法,研究者能够从宏观角度了解学生的在线学习体验,并发现可能存在的问题和挑战。 自然语言处理(NLP)是机器学习的一个分支,它使计算机能够理解、解释和生成人类语言。在本项目中,自然语言处理技术被用于挖掘微博评论中的关键词汇、短语、语义和情感倾向,从而进一步分析学生在线学习的感受和态度。 机器学习是一种人工智能技术,它让计算机能够从数据中学习并做出预测或决策。在本研究中,机器学习算法被用于处理和分析数据集,以识别和分类微博评论中的情绪倾向,比如积极、消极或中性情绪。 数据可视化是将数据转化为图表、图形和图像的形式,使得复杂数据更易于理解和沟通。在本项目中,数据可视化技术被用于展示分析结果,帮助研究者和教育工作者直观地理解数据分析的发现和趋势。 爬虫技术是一种自动化网络信息采集工具,能够从互联网上抓取所需数据。在本研究中,爬虫技术被用于收集微博平台上的评论数据,为后续的数据分析提供原始材料。 本项目还包括一项针对疫情前后大学生在线学习体验的文本挖掘与情感分析研究。该研究将分析学生在疫情这一特定时期内对在线学习的看法和感受,这有助于教育机构了解疫情对在线教育质量的影响,进而针对发现的问题进行优化和调整。 整个项目的研究成果,包括附赠资源和说明文件,为线上教育体验的优化提供了理论和实践指导。通过对微博评论数据的采集、分析和可视化展示,项目为教育技术领域提供了一个基于实际数据的决策支持平台。 项目成果的代码库名称为“covid_19_dataVisualization-master”,表明该项目特别关注于疫情对教育造成的影响,并试图通过数据可视化的方式向公众和教育界传达这些影响的程度和性质。通过这种方式,不仅有助于教育机构理解并改进在线教育策略,还有利于政策制定者根据实际数据制定更加有效的教育政策。 本项目综合运用了当前教育技术领域内的一系列先进技术,旨在为疫情这一特殊时期下的大学生在线学习体验提供深入的分析和改进方案。通过大数据分析、自然语言处理、机器学习、数据可视化和爬虫技术的综合运用,项目揭示了在线学习体验的多维度特征,并为优化线上教学提供了科学的决策支持。
2025-10-30 22:20:34 132.97MB
1
在当今高度数字化的金融市场中,量化交易成为了投资者和交易者不可忽视的一个领域。量化交易涉及到复杂的计算方法和算法,通过计算机程序来执行交易策略。为了掌握量化交易的基础,本教程着重介绍最为基础的qmt相关接口,旨在为读者提供一个全面了解和学习量化交易接口的平台。 qmt,即Quantitative Multi-Threaded,是一种专门为量化交易设计的多线程框架。它能够有效地处理和执行大量数据的分析与交易指令。通过使用qmt,量化交易者可以构建更为复杂和精细化的交易策略,并通过多线程技术实现更快的策略执行速度和更高的交易效率。 本教程首先会介绍qmt的安装与配置过程,包括需要安装的软件依赖、环境变量的设置等基础准备工作。教程将详细阐述qmt框架的核心概念,包括事件驱动架构、数据流处理、策略引擎的工作原理等,这些都是学习qmt必须掌握的知识点。 接下来,教程将深入讲解qmt框架中的各种接口和模块,例如数据接口、交易接口和消息接口等。数据接口是qmt与外部数据源交互的桥梁,它包括了历史数据接口、实时数据接口和定制数据接口等,这些都是为了满足量化交易者对数据的多样化需求。交易接口则提供了与交易所或券商交易系统交互的途径,通过这些接口,交易者可以将交易策略转化为实际的买卖订单。消息接口则负责在系统内部传递消息,保证策略引擎和数据流处理模块的协同工作。 除了理论知识的学习,本教程还会提供一系列的实践操作,帮助读者更好地理解qmt框架的实际应用。例如,如何编写一个简单的量化交易策略,并通过qmt接口在模拟环境中运行和测试。此外,教程还会介绍如何进行交易策略的优化,包括参数调优、风险管理等方面的内容。 为了提升学习效果,本教程还将提供一些高级主题的探讨,比如qmt框架的扩展性、如何与第三方系统集成等,这些都是为进一步提高量化交易能力所必需的高级技能。 本教程旨在为量化交易初学者提供一个系统的学习路径,帮助他们快速掌握qmt框架的使用方法,以及在量化交易领域内如何构建、测试和优化交易策略的完整流程。通过对qmt框架基础接口的学习,读者将能够建立起扎实的量化交易基础知识,并为进一步深入量化交易领域打下坚实的基础。
2025-10-30 21:58:43 76.46MB 量化交易
1