CIC-DDoS2019数据集是由加拿大信息安全研究中心(CIC)发布的用于DDoS攻击检测研究的数据集。该数据集模拟真实网络环境,包含多种DDoS攻击类型,如SYN Flood、UDP Flood等,以及正常网络流量,旨在帮助研究人员开发和评估DDoS攻击检测模型。数据集特点 丰富的攻击类型:涵盖了多种常见的DDoS攻击方式,如SYN Flood、UDP Flood、DrDoS攻击(包括DNS、LDAP、MSSQL等)。 详细的流量特征:使用CICFlowMeter-V3工具生成,包含大量网络流量特征,如数据包长度、传输时长、流持续时间等,为模型训练提供了丰富的数据维度。 大规模数据量:数据集包含大量的网络流量记录,能够为机器学习和深度学习模型提供足够的训练样本。 真实环境模拟:数据集模拟了真实网络环境中的流量模式,有助于开发能够在实际网络中有效工作的检测模型。 数据集结构 数据集以CSV文件形式提供,每行代表一个网络流,列代表不同的特征和标签。特征包括源IP、目的IP、端口号、协议类型、数据包长度等,标签则指示该流量是否为攻击流量以及攻击类型。
2025-05-20 15:39:26 19.64MB 机器学习 预测模型
1
《AI基于机器学习的股票数据挖掘分析系统的设计与实现》这篇论文主要探讨了如何利用人工智能技术,特别是机器学习算法,来对股票市场进行深度的数据挖掘和分析。这是一份涵盖论文说明书、任务书和开题报告的综合研究,旨在为金融商贸领域的决策者提供科学的工具和方法。 在论文中,作者首先介绍了人工智能在金融领域的应用背景,强调了在海量股票数据中寻找规律和预测趋势的重要性。接着,论文深入讨论了机器学习的基础理论,包括监督学习、无监督学习和强化学习等不同类型的算法,如线性回归、决策树、随机森林、支持向量机以及神经网络等,并分析了它们在股票数据分析中的适用场景。 数据挖掘是该系统的核心部分,通过对历史股票交易数据的预处理、特征工程和模式识别,提取出有价值的特征。这些特征可能包括股票的价格、交易量、公司基本面信息等,甚至可能涉及宏观经济指标。作者可能探讨了如何构建有效的特征组合,以提高模型的预测精度。 在系统设计与实现环节,作者可能会详细描述数据获取和清洗的过程,以及如何构建一个能够实时更新和学习的模型。这可能涉及到大数据处理技术,如Hadoop或Spark,以及云计算平台的运用,以实现高效的数据处理和模型训练。同时,可能还会介绍系统的架构设计,包括前端用户界面和后端数据分析模块的交互逻辑。 在论文的实证分析部分,作者会利用特定的股票数据集进行模型验证,对比不同机器学习算法的性能,并可能提出优化策略。此外,通过案例研究,展示系统如何帮助投资者做出更明智的决策,例如,通过预测股票价格波动,识别投资机会,或者预警潜在风险。 毕业设计的整个过程不仅锻炼了作者的科研能力和编程技能,也展示了将理论知识应用于实际问题的能力。尽管论文可能无法提供直接的投资建议,但其方法论和思路对于理解人工智能在金融领域的应用具有重要的参考价值。 这篇论文和相关文档为读者提供了深入理解和构建AI驱动的股票数据挖掘分析系统的基础,有助于金融商贸领域专业人士了解如何利用机器学习提升决策效率,同时也为后续研究提供了宝贵的思路和参考。
1
1.项目基于 MNIST 数据集,使用 VGG-19 网络模型,将图像进行风格迁移,实现去噪功能。 2.项目运行环境:Python 和 TensorFlow 运行环境。需要 Python 3.6 及以上配置,使用conda安装环境 conda create -n tensorflow python=3.8.10 3.项目包括 3 个模块:图片处理、模型构造、迭代更新。项目用到的网络模型为预训练好的VGG-19,使用过程中抛弃最后三个全连接层,取出前面各层的参数,构建网络结构。损失函数,由内容损失、风格损失构成。内容损失采用 L2范数损失,风格损失用 Gram 矩阵计算各通道的相关性,以便更好的捕捉笔触、纹理等细节信息,利用 adam 梯度下降算法进行优化。 4.准确率评估:对于图像风格迁移这种模糊算法,并没有客观的评判标准。损失函数可以反映出一部分情况,更多的是人为观察运行结果。经测试,经过 40 次迭代风格迁移已很明显,可根据自身需求,合理调节迭代次数。
2025-05-19 13:15:43 522.16MB tensorflow 深度学习 机器学习 人工智能
1
DataFunSummit2025知识图谱峰会嘉宾演讲PPT合集
2025-05-19 09:33:48 8.5MB
1
在机器学习领域,概念学习是其中的一个关键部分,主要关注如何从特定的训练样例中推导出一般性的规律或规则。这一过程通常涉及到从特殊到一般的过程,即一般到特殊序。在这个序列中,学习算法逐步从最通用的假设开始,通过排除不符合样例的假设,逐渐逼近最具体的、能够准确描述所有正例的假设。 让我们深入理解机器学习的定义。机器学习是一种人工智能技术,它的目标是创建能从经验中学习并提升其处理能力的计算机程序。核心问题在于如何从特定的训练样例中归纳出一个普遍适用的函数,这被称为归纳学习。归纳学习可以分为有监督学习和无监督学习。有监督学习是指有导师的存在,即每个训练样例都带有正确的标签;而无监督学习则是在没有标签的情况下,通过观察数据的内在结构来学习。 概念学习是属于有监督学习的一种形式。它涉及到学习一个概念,即从大量的实例中找出一个子集,这些实例共享某些共同的特征。概念可以是一个布尔函数,它对给定的输入(实例)返回一个二元结果(例如,是或否)。在概念学习中,我们通常面对的问题是:给定一系列已标记的样例,如何确定一个概念的一般性定义? 在实际应用中,例如在概念学习的例子中,目标是学习一个概念——“Aldo 进行水上运动的日子”。通过分析各种天气条件(如天空状况、气温、湿度、风力、水温、天气预报),我们希望找到一组规则,这些规则能准确地预测出Aldo是否会在那天进行水上运动。学习过程通常涉及到构建一个假设空间,其中包含所有可能的假设,然后通过比较这些假设与训练样例的匹配程度来逐步缩小范围,直到找到一个最具体的假设,这个假设能覆盖所有的正例且不包括任何反例。 在这一过程中,我们可能会使用到变型空间(Version Space)的概念,它是由所有可能的假设组成的集合,这些假设都能解释训练样例。随着学习的进行,不一致的假设会被删除,最终留下的就是极大特殊假设,即满足所有正例但不包含任何反例的假设。FIND-S 算法就是一个例子,它通过不断剔除与反例矛盾的假设来找到极大特殊假设。 归纳偏置(Inductive Bias)在概念学习中也扮演着重要角色。这是学习算法的内在倾向,决定了在面对多个可能的假设时,算法倾向于选择哪一个。归纳偏置可以由算法的设计、特征选择、先验知识等多种因素决定。 总结起来,概念学习是机器学习中的一个重要组成部分,它涉及到从具体样例中学习抽象概念,并通过一般到特殊序来逐步逼近目标概念的精确定义。这一过程通常包括构建假设空间、利用训练样例进行排除,以及在可能的假设中寻找最优解。在实际应用中,如天气预测案例所示,概念学习可以帮助我们从复杂的数据中提取有用的信息,形成可执行的决策规则。
2025-05-17 16:35:05 652KB 机器学习 概念学习 一般到特殊序
1
### 机器学习之概念学习详解 #### 一、引言 机器学习中的概念学习是一种重要的学习方式,它涉及从特定的训练样例中提取出一般性的概念或规则。这一过程通常被视为从训练样本中推导出能够应用于更广泛场景的通用函数——这是学习的核心问题。在概念学习中,“概念”可以被理解为一个对象或事件的集合,它是从更大的集合中选择的一个子集,或者是在这个较大集合中定义的一个布尔函数。 #### 二、概念学习的基本框架 **概念学习问题的定义**: - **给定**:一个样例集合及其对应的标签(即每个样例是否属于某个概念的标注)。 - **目标**:推断出该概念的一般定义。这一过程也被称为从样例中逼近布尔函数。 - **本质**:概念学习旨在根据关于某个布尔函数的输入输出训练样例来推断出该布尔函数。 **概念学习视角**: - 从搜索的角度来看,概念学习可以视为在预定义的假设空间中搜索假设,以实现与训练样例的最佳匹配。 - 利用假设空间的偏序结构有助于更好地理解和优化搜索过程。 #### 三、概念学习的具体任务 **示例**:假设我们的目标是预测某人Aldo是否会享受水上运动,我们可以通过分析天气等条件来预测其行为。 - **目标概念**:布尔函数`EnjoySport`,用于预测某一天Aldo是否会进行水上运动。 - **任务**:基于某天的特征(如天气预报、水温、风力等),预测`EnjoySport`的值。 - **样例集**:每个样例由一系列属性组成,例如天气情况、温度等。 **样例集示例**: | EnjoySport | Forecast | Water | Wind | Humidity | AirTemp | Sky | |------------|----------|-------|------|----------|---------|-----| | Yes | Change | Cool | Strong | High | Warm | Sunny | | Yes | Change | Warm | Strong | High | Cold | Rainy | | Yes | Same | Warm | Strong | High | Warm | Sunny | | Yes | Same | Warm | Strong | Normal | Warm | Sunny | **假设的表示形式**: - 假设可以采用多种表示方式,在这里采用的是属性约束的合取式表示法。 - 每个假设由六个约束(或变量)构成的向量表示;每个约束对应于一个属性的可能值范围,包括: - `?`:表示任何可接受的值。 - 明确指定的属性值(如`Water=Warm`)。 - `φ`:表示不接受任何值。 **假设示例**: - ``:表示任意的预报、冷的水温、高的湿度,其他属性无限制。 - ``:表示所有样例均为正例。 - `<φ,φ,φ,φ,φ,φ>`:表示所有样例均为反例。 #### 四、归纳学习假设 **术语定义**: - 实例集`X`:概念定义与其上实例的集合。 - 目标概念`c`:待学习的概念或函数,`c:X→{0,1}`。 - 训练样例:``,其中`x∈X`,`c(x)`为目标概念值。 - 正例:目标概念成员,即`c(x)=1`。 - 反例:非目标概念成员,即`c(x)=0`。 - 假设集`H`:所有可能假设的集合,搜索目标函数的真正范围。 **归纳学习假设**: - 归纳学习的本质是从特殊样例中得出普遍规律。 - 在归纳学习中,仅有的信息是训练样例,因此输出的假设只能保证与训练样例相匹配。 - 由此产生的基本假定是:如果假设`h`与训练样例相匹配,则`h`很可能也能正确分类未知样例。 - 这意味着归纳学习的目标是寻找一个假设`h`,使得对于所有的`x∈X`,都有`h(x)=c(x)`。
2025-05-17 16:09:50 380KB 极大极小化方法 空间方法
1
YOLOv2(You Only Look Once version 2)是一种基于深度学习的实时目标检测系统,由Joseph Redmon和Ali Farhadi等人在2016年提出。它在YOLO(第一代)的基础上进行了改进,提高了检测精度并减少了计算量,从而在保持速度的同时提升了性能。这个压缩包包含的是YOLOv2在608*608分辨率下的预训练权重文件(yolov2.weights)和配置文件(yolov2.cfg),这两个文件对于理解和应用YOLOv2模型至关重要。 我们来详细解析YOLOv2的核心特点: 1. **多尺度预测**:YOLOv2引入了多尺度预测,通过在不同尺度上进行预测,提高了对小目标检测的准确性。它采用了一个名为"feature pyramid network"(特征金字塔网络)的结构,能够处理不同大小的目标。 2. **Batch Normalization**:在YOLOv2中,几乎所有的卷积层都采用了批量归一化,这有助于加速训练过程,提高模型的稳定性和收敛速度。 3. **Anchor Boxes**:YOLOv2使用预先定义的 anchor boxes(锚框)来覆盖多种目标的尺寸和宽高比,这些锚框与真实边界框进行匹配,从而提高了检测精度。 4. **Skip Connections**:YOLOv2借鉴了ResNet的残差学习框架,引入了跳跃连接,使得低层特征可以直接传递到高层,保留了更多的细节信息,提高了定位的准确性。 5. **Fine-tuning**:预训练权重文件(yolov2.weights)是在大量图像数据集如ImageNet上训练得到的,可以作为基础模型,通过微调适应特定任务的数据集。 配置文件(yolov2.cfg)是YOLOv2模型结构的描述,包含了网络的层定义、超参数设置等信息。例如,网络的深度、每个卷积层的过滤器数量、池化层的大小、激活函数的选择等都会在这个文件中指定。用户可以根据自己的需求调整这些参数,进行模型的定制。 使用这个预训练权重文件和配置文件,开发者或研究人员可以快速部署YOLOv2模型进行目标检测任务,或者进一步在自己的数据集上进行迁移学习,以优化模型性能。对于初学者来说,这是一个很好的起点,因为可以直接利用已有的模型进行实践,而无需从头开始训练。 总结来说,YOLOv2是一个高效且精确的目标检测框架,广泛应用于自动驾驶、视频监控、图像分析等领域。这个压缩包中的预训练权重和配置文件为理解和应用YOLOv2提供了便利,是深度学习和机器视觉领域的重要资源。通过学习和实践,我们可以深入理解目标检测技术,并掌握如何利用深度学习解决实际问题。
2025-05-16 13:21:10 180.48MB 神经网络 机器学习 机器视觉 深度学习
1
内容概要:本文介绍了如何使用MATLAB实现鲸鱼优化算法(WOA)与卷积神经网络(CNN)结合,以优化卷积神经网络的权重和结构,从而提高多输入单输出回归预测任务的准确性。项目通过WOA优化CNN模型中的权重参数,解决传统训练方法易陷入局部最优解的问题,适用于光伏功率预测、房价预测、天气预报等领域。文章详细描述了项目背景、目标、挑战、创新点及其应用领域,并提供了模型架构和部分代码示例,包括数据预处理、WOA优化、CNN模型构建、模型训练与评估等环节。; 适合人群:对机器学习、深度学习有一定了解的研究人员和工程师,特别是关注优化算法与深度学习结合的应用开发人员。; 使用场景及目标:①解决高维复杂输入特征的多输入单输出回归预测任务;②通过WOA优化CNN的超参数和权重,提高模型的泛化能力和预测准确性;③应用于光伏功率预测、股票价格预测、房价预测、环境污染预测、医疗数据分析、智能交通系统、天气预测和能源需求预测等多个领域。; 阅读建议:由于本文涉及较多的技术细节和代码实现,建议读者先理解WOA和CNN的基本原理,再逐步深入到具体的模型设计和优化过程。同时,结合提供的代码示例进行实践操作,有助于更好地掌握相关技术和方法。
1
网络安全_卷积神经网络_乘法注意力机制_深度学习_入侵检测算法_特征提取_模型优化_基于KDD99和UNSW-NB15数据集_网络流量分析_异常行为识别_多分类任务_机器学习_数据.zip
2025-05-14 12:34:34 1.04MB
1
这个数据集名为“Resume Dataset”,包含了来自不同职业的简历。它旨在帮助公司筛选合适的候选人,因为大型企业在招聘过程中往往面临大量简历,而没有足够的时间去逐一查看。这个数据集特别适用于机器学习算法的训练,以自动化简历筛选过程。 数据集中的简历涵盖了多个专业领域,如数据科学、IT、人力资源等,包含了求职者的教育背景、技能、工作经验等信息。这些信息对于进行多类分类、文本分析等任务非常有用。数据集的可用性评分为7.06,属于公共领域(CC0: Public Domain),意味着可以自由使用而无需担心版权问题。 数据集的更新频率为“从不”,表明这是一个静态的数据集,不会定期更新。它被标记为适合初学者使用,并且与职业和多类分类任务相关。数据集文件名为“UpdatedResumeDataSet.csv”,大小为3.11MB。此外,数据集在Kaggle上的页面显示,它被用于学习、研究和应用等多种目的,并且有用户基于此数据集创建了多个笔记本,如“Resume Screening using Machine Learning”和“Resume_NLP”,这些笔记本可能包含了如何使用数据
2025-05-12 13:45:19 383KB 机器学习 预测模型
1