BevFormer+数据集 cocodataset数据集 Marmousi1 mmdetection数据集COCO VIT算法数据集+cifar-10 VOCdevkit+Unet数据集 YOLO5+NEU-DET数据集 small数据集 datasets+DeepLabV3Plus数据集+datasets+EfficientDet数据集,zip ILSVRC2012 img_ val.tar SFC-using-CNN-Parihaka-3D-main.zip unet++数据集医学细胞数据集,zip VOC07+12+test.zip 有地震数据集含有断层数据二维segy文件和三维segy文件
2024-07-28 16:40:23 170B 深度学习 数据集
1
标题中的“多种隧道裂缝数据集可用于目标检测分类”揭示了这个资源的核心内容,这是一个专门针对隧道裂缝检测的数据集,设计用于训练和评估目标检测模型。目标检测是计算机视觉领域的一个重要任务,它不仅要求识别图像中的物体,还要精确地定位这些物体的位置。在这个场景中,目标就是隧道裂缝,这对于隧道安全监测、维护工作以及结构健康评估具有重要意义。 描述进一步提供了具体信息,指出该数据集包含了2100多张经过人工打标签的图片,这意味着每张图片都已标记出裂缝的位置,这对于深度学习模型的训练至关重要。标签有两种格式:txt和xml。txt文件通常包含简洁的坐标信息,而xml文件则可能包含更详细的对象边界框信息,如顶点坐标和类别信息。这两种格式为不同的模型训练库提供了灵活性,比如PASCAL VOC和YOLO系列模型支持xml格式,而某些其他库可能更适合txt格式。 提到的YOLOv8是You Only Look Once (YOLO)目标检测框架的最新版本,这是一个实时目标检测系统,以其快速和高效著称。作者表示使用YOLOv8训练得到的模型在数据集上的平均精度(mAP)达到了0.85,这是一个相当高的指标,表明模型在识别和定位隧道裂缝方面表现出色。 结合“检测分类”和“深度学习数据集”的标签,我们可以理解这个数据集不仅用于定位裂缝,还可能涉及分类任务,即区分不同类型的裂缝,这在工程实践中可能是必要的,因为不同类型的裂缝可能预示着不同的结构问题。 这个压缩包提供的数据集是一个专为隧道裂缝检测定制的深度学习资源。它包括大量带有精确标注的图像,适配多种标签格式,并且已经过YOLOv8模型的验证,具有较高的检测性能。这样的数据集对于研究者和工程师来说非常有价值,他们可以利用这些数据来开发或改进自己的目标检测算法,以提升隧道安全监控的自动化水平和效率。同时,由于数据集的质量和规模,它也适用于教学和学习深度学习,尤其是目标检测和图像分类领域的实践项目。
1
21个深度学习开源数据集分类汇总.docx
2024-05-10 19:50:40 27.34MB 深度学习 数据集
1
深度学习图像分类数据集 脑PET图像分析和疾病预测挑战赛%2F脑PET图像分析和疾病预测初赛数据 可以用来训练自己的模型
2024-03-07 19:12:28 18.55MB 深度学习 数据集 图像分类
1
深度学习烟叶检测/分割数据集,包含五百六十张不同场景下的烟草叶片图像数据,可用于人工智能(深度学习)的学习和研究
2023-12-23 19:33:41 127.4MB 人工智能 深度学习 数据集 目标检测
1
包含五百多张救生衣图像数据,可用作深度学习模型训练,测试,yolo等目标检测或图像分割算法等
2023-11-16 11:38:19 87.63MB 深度学习 数据集 人工智能 YOLO
1
深度学习草莓成熟度检测数据集,不同时期的草莓图像以及标注文件,包含成熟,生长,花期三类标签
2023-11-07 22:15:05 23.83MB 深度学习 数据集 目标检测
1
机器学习/深度学习必备,income数据集
2023-09-17 14:42:26 727B 机器学习 深度学习 数据集
1
UCF101数据集,完整版,网盘分享。
2023-05-15 20:52:16 12KB pytorch 深度学习 数据集
1
Adobe composition-1k数据集只包含alpha和fg(以及测试集中的trimap)。 文件内容包括如下: ├── adobe_composition-1k │ ├── Test_set │ │ ├── Adobe-licensed images │ │ │ ├── alpha │ │ │ ├── fg │ │ │ ├── trimaps │ ├── Training_set │ │ ├── Adobe-licensed images │ │ │ ├── alpha │ │ │ ├── fg │ │ ├── Other │ │ │ ├── alpha │ │ │ ├── fg 总的来说,数据集文件收集不易,但是完整的,总共体积大小为410MB左右,如果要合成图像的话还需要经过后续转换步骤,涉及COCO训练数据和VOC测试数据。
2023-05-01 17:04:06 410.97MB 深度学习 数据集 图像抠图 Composition-1k
1