# employment.py 该文件抓取的是智联招聘网站的招聘信息,可以根据需要设置输入搜索关键词和查找页数,就会得到结果,生成相应的文件“{keyword}zhilian”, 项目中的AIzhilian.csv、javazhilian以及pythonzhilian就是生成的示例文件。 # employment2.py 通过驱动模拟自动控制浏览器搜索boss直聘网页上的相关信息,有关搜索关键词也是在代码上硬编码,不过目前有些问题只实现了一页,该程序取 得到的结果文件也是生成在同目录下,文明名为“boss_{运行时的日期}”
2025-04-24 01:01:46 89KB 爬虫 python
1
整体使用requests模块,把京东的搜索框作为一个加载页面,我们从窗体文件中为他传入一个关键词,把这个关键词作为京东搜索网址里搜索的keyword,我设的取范围是搜索商品自初始页面往后的600件商品,在这个京东的网页很神奇,因为有些商品你虽然在这个去中看到了,但是你拿着编号去页面搜索的时候却看不到,每一页有60+左边20=80个商品展示。为了增加取的速度我是用了多线程,总共大约18个,但速度快带来的代价就是我总共没使用几次,我的IP就封掉了,所以大家学习一下就行,别给人家添麻烦了,哈哈。
2025-04-22 22:27:42 12.75MB python 爬虫
1
虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 虫的工作流程包括以下几个关键步骤: URL收集: 虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反虫机制,虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反虫应对: 由于虫的存在,一些网站采取了反虫措施,如验证码、IP封锁等。虫工程师需要设计相应的策略来应对这些挑战。 虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2025-04-13 22:13:50 44KB 爬虫 python 数据收集
1
在当今网络信息爆炸的时代,通过编写程序自动化地从互联网获取数据已经变得越来越普遍,Python作为一门强大的编程语言,在网络数据抓取领域中占据着举足轻重的地位。本文针对如何使用Python取大众点评网站中冰雪大世界评论区的数据进行了深入的研究,并提供了具体的实现方法和代码实例。 为了能够有效地取数据,需要了解大众点评网站的页面结构和评论数据是如何展示的。通常情况下,这些数据会以HTML格式存储在网页中,并通过JavaScript动态加载。因此,在编写虫之前,首先需要检查目标网页的请求头信息以及加载评论数据时所使用的JavaScript代码,以便确定数据加载的方式,是通过Ajax请求加载,还是直接嵌入在HTML代码中。 接下来,如果是通过Ajax加载数据,需要利用Python的requests库来模拟网络请求,或者使用selenium等自动化测试工具模拟浏览器行为,以获取实际加载评论区内容的API接口。如果是直接嵌入在HTML中,则可以使用BeautifulSoup或lxml等库解析HTML,提取评论内容。 为了实现对大众点评冰雪大世界评论区数据的取,本项目提供了设置页码的功能,这意味着用户可以根据需要取指定页码内的评论数据。为此,需要分析评论数据的URL结构,并预留修改URL接口的参数,以便虫能够修改URL参数从而访问其他页面的数据。例如,如果每页评论数据都是通过一个带有页码参数的URL访问的,我们则需要找到这个参数的规律,并将其编写成可修改的代码,以实现对多页数据的取。 在编写虫代码时,除了要处理网络请求和数据解析外,还需要考虑异常处理、数据存储等多方面的因素。网络请求可能会因为各种原因失败,例如目标网站服务器的响应错误、网络不稳定等,因此需要合理设计错误处理机制,保证虫程序的稳定运行。而数据存储方面,可以将抓取到的评论数据存储到文件或数据库中,便于后续的数据分析和处理。 需要特别注意的是,取网站数据时要严格遵守相关法律法规以及网站的服务条款。大多数网站对虫行为都有一定的限制,例如在robots.txt文件中声明不允许取的规则。因此,在编写虫前,必须仔细阅读目标网站的服务条款,并确保虫的行为不会违反法律法规或对网站造成损害。 通过Python取大众点评冰雪大世界评论区数据的过程涉及到了网络请求模拟、数据解析、多页数据取和异常处理等多个方面。只要合理利用Python及其相关库的功能,就能够有效地抓取和分析这些网络数据,为数据分析和决策提供有力支持。
2025-04-13 20:32:15 4KB python
1
在Python编程语言中,取特定关键词的图片是一项常见的任务,尤其在构建图像分类数据集时。本篇文章将深入探讨如何使用Python进行网络图片取,并构建一个属于自己的分类数据集。 我们需要理解基本的网页抓取概念。Python中有许多库支持网页抓取,其中最常用的是BeautifulSoup和Scrapy。BeautifulSoup是解析HTML和XML文档的库,而Scrapy则是一个完整的虫框架,适用于大规模数据抓取。 1. **安装依赖库** 在开始之前,确保已经安装了Python的requests、BeautifulSoup和lxml库。如果还没有安装,可以使用以下命令: ``` pip install requests beautifulsoup4 lxml ``` 2. **构造请求** 使用requests库发送HTTP请求到目标网站。例如,我们想抓取包含特定关键词的图片,可以通过搜索该关键词来获取含有图片的页面URL。 3. **解析HTML** 使用BeautifulSoup解析返回的HTML响应。找到包含图片链接的标签,如``标签。通常,图片链接在`src`属性中。 4. **提取图片链接** 通过遍历解析后的HTML结构,提取出所有目标图片的URL。需要注意的是,有些图片可能位于相对路径中,需要与页面的基URL结合才能得到完整链接。 5. **下载图片** 使用requests库的get方法下载图片。为了避免因网络问题导致的下载失败,可以设置重试机制。同时,可以为图片指定一个本地保存路径。 6. **创建数据集** 将下载的图片按照分类存储在不同的文件夹中,以形成数据集。如果关键词是分类依据,可以根据关键词将图片存入对应的类别目录。 7. **优化虫** 考虑到网站的反策略,可能需要设置延迟或使用代理IP。还可以使用Scrapy框架,它提供了更强大的功能,如中间件、虫调度器和数据管道,可以更好地管理取过程。 8. **处理异常** 在虫程序中,应合理处理可能出现的各种异常,如网络错误、解析错误等,确保虫的健壮性。 9. **合法性与道德考虑** 在进行网络虫时,必须遵守相关法律法规,尊重网站的robots.txt文件,不要对目标网站造成过大的访问压力。 10. **扩展应用** 除了基本的图片取,还可以利用机器学习库(如TensorFlow、PyTorch)对抓取的图片进行预处理,进一步构建深度学习模型,进行图像分类、目标检测等任务。 通过以上步骤,我们可以实现根据关键词取特定图片并构建分类数据集的目标。这个过程不仅涵盖了Python的基本网络请求、HTML解析,还涉及到了数据集的构建和虫的编写技巧。对于数据科学和机器学习的初学者,这是一个很好的实践项目,可以帮助他们巩固基础知识,同时提升解决问题的能力。
2025-04-09 18:56:02 28KB python 数据集
1
数据挖掘 大众点评评论文本挖掘,包括点评数据取、数据清洗入库、数据分析、评论情感分析等的完整挖掘项目 取大众点评十大热门糖水店的评论,取网页后从html页面中把需要的字段信息(顾客id、评论时间、评分、评论内容、口味、环境、服务、店铺ID)提取出来并存储到MYSQL数据库中。
2025-03-27 14:31:55 18.55MB 数据分析
1
基于python lxm库解析微博签到地点详情页,提取出博文相关内容以及图片
2025-03-15 16:45:23 2KB python lxml POI
1
取懂车帝车价程序代码
2024-12-09 12:51:52 825B
1
在本篇内容中,我们将深入探讨如何利用Python进行网络虫实战,特别是在“澎湃新闻”网站上针对特定关键词“交通事故”进行新闻内容的抓取。我们要了解的是Python中的两个关键库:`requests`和`BeautifulSoup`,它们是Python虫的基础。 `requests`库用于发送HTTP请求,如GET和POST,它能够方便地获取网页源代码。然而,对于动态加载的内容,如JavaScript渲染的数据,`requests`可能无法获取到完整的信息。此时,我们就需要用到`selenium`库,它能够模拟真实用户操作,控制浏览器动态加载页面内容。 `selenium`库是一个强大的自动化测试工具,也可用于网页虫。它允许我们通过编程方式控制浏览器,如Chrome或Firefox,进而获取动态加载的数据。在这个案例中,我们首先会用`selenium`搜索含有关键词“交通事故”的新闻链接,然后遍历这些链接,进一步获取每篇文章的详细内容。 在实现过程中,我们可能会遇到反策略,如网站的robots.txt文件、IP限制、User-Agent检查等。因此,我们需要设置合理的请求头(headers),有时还需要使用代理IP,以及定时等待(time.sleep)来模拟人类浏览行为,避免过于频繁的请求引起网站封锁。 在`澎湃新闻交通事故文章取.py`这个文件中,我们可能看到如下步骤: 1. 导入必要的库,包括`selenium`、`BeautifulSoup`和`requests`。 2. 使用`selenium`的`webdriver`模块启动浏览器,比如Chrome,并指定其加载的URL为“澎湃新闻”首页。 3. 定义一个函数,该函数使用`selenium`查找包含关键词的新闻元素,获取新闻链接。 4. 遍历找到的链接,对每个链接单独发送GET请求(可能用`requests`,也可能用`selenium`的浏览器控制)。 5. 解析返回的HTML内容,通常用`BeautifulSoup`,找出文章的详细内容。 6. 将抓取到的内容存储到本地文件或者数据库,便于后续分析。 在`取交通事故总览.py`文件中,可能是在第一步的基础上进行了扩展,对所有与“交通事故”相关的新闻进行整体抓取,形成一个全面的概述,这可能包括新闻的数量、发布日期、作者等信息。 自然语言处理(NLP)在这样的项目中也扮演着重要角色。我们可以利用`jieba`库进行中文分词,`nltk`或`spaCy`进行英文处理,提取关键词、主题或情感分析。这些数据可以用于新闻趋势分析,帮助我们理解交通事故的相关话题在一段时间内的变化。 Python虫技术结合`selenium`库能有效应对动态加载的网页,而`BeautifulSoup`则用于解析静态HTML结构。通过这样的实战项目,我们可以学习到如何组织虫逻辑,处理各种网页结构,以及如何应对反策略。同时,这也是一个很好的机会去实践NLP技术,将取到的数据转化为有价值的信息。
2024-11-30 22:47:23 2KB python 爬虫
1
webporter 是一个基于垂直虫框架 webmagic 的 Java 虫应用,旨在提供一套完整的数据取,持久化存储和可视化展示的实践样例。 webporter 寓意“我们不生产数据,我们只是互联网的搬运工~” 如果觉得不错,请先在这个仓库上点个 star 吧,这也是对我的肯定和鼓励,谢谢了。 目前只提供了知乎用户数据的虫示例。不定时进行调整和补充,需要关注更新的请 watch、star、fork
2024-11-14 07:46:55 66KB 爬虫 java
1