目前大多数的图像风格迁移方法属于有监督学习,训练数据需要成对出现,并且在处理图像背景时,现有的方法过于繁琐。针对这些问题,提出了一种基于图像蒙板的无监督图像风格迁移方法。在实验中,采用了基于循环一致性的CycleGAN架构,并使用Inception-ResNet结构设计了一个全新的具有内置图像蒙板的生成式模型,最后通过无监督学习将图像的背景与学习到的抽象特征进行自动重组。实验表明,新方法有效地对图像背景和抽象特征进行自动分离与重组,同时解决了特征学习过程中的区域干扰问题,获得了可观的视觉效果。
1
一个简单的PyTorch实现生成式对抗网络,专注于动画脸部绘图。A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing。
2021-04-25 10:56:35 16.04MB Python开发-图片处理
1
生成式对抗攻击。GAN代码。有解释,比较不错的初学者入门学习资资料。
2021-04-15 15:43:12 84KB 攻击
1
pytorch-CycleGAN-and-pix2pix
1
本合集涵盖了2015-2019年发表在计算机视觉三大顶级会议上的基于深度学习的图像超分辨率算法的大多数论文。
1