为了克服BP的这些缺陷,本人对算法做了一些改进确定连接权修正值的计算过程,实际上是优化计算的梯度下降法。当能量公式对应的误差曲面为窄长型时,这种算法在谷的两壁跳来跳去,影响了网络的收敛速度,对算法最普通的改进方法是增加附加动量项。利用附加动量项可以起到平滑梯度方向的剧烈变化,增加算法的稳定性。在具体计算中,学习率η越大,学习速度会越快,但过大时会引起震荡效应;而动量因子α取得过大可能导致发散,过小则收敛速度过慢。并为了解决BP易于陷于极小值现象,用人工遗传算法来优化BP网络的初始权值。遗传算法是根据生物进化思想而启发得出的一种全局优化算法,在本质上是一种不依赖具体问题的直接搜索方法,它仅需给出目标函数的描述,从一组随机产生的称为“种群(population)”的初始解开始,从全局空间出发搜索问题的最优解。由于遗传算法善于全局搜索,且能以较大的概率找到全局最优解,故用它来完成前期搜索能较好的克服BP算法的局部极小的缺陷。将GA和BP结合起来,形成GA-BP混合训练算法,以GA优化BP网络的初始权值和阈值,再由BP算法按负梯度方向修正网络权值及阈值,进行网络训练。这种方法避免了BP网络易陷入局部极小问题,达到优化网络目的,更能精确的实现城市用电量预测。 实例讲解
2022-01-14 16:35:36 128KB MATLAB
1
短期负荷预测为实时电力市场运行提供重要依据, 预测准确度的提升对于揭示负荷变化的不确定性以及日前 预测偏差具有重要意义。基于电力系统中含有的丰富大数据 资源,提出了一种针对区域级负荷的深度长短时记忆网络超 短期预测方法,该方法包括输入数据的预处理、深度长短时 记忆(long short-term memory,LSTM)网络的构建以及模型 的训练和超参数的寻找等步骤。其中采用随机搜索的方法寻 找最优超参数,并在该超参数下选择泛化能力最优的模型,与前沿机器学习预测算法进行对比。实验结果证实,深度 LSTM 网络可以取得更好的预测效果,适合于离线训练实时 预测。此外,通过对隐藏层激活向量的可视化
1
目前常用的负荷预测方法主要是通过负荷自身和相关关系的研究建立模型,提出一种新的负荷预测思路,即从传统频域预测方法的误差入手,通过研究虚拟预测误差的历史分布规律进行误差预测,然后对传统方法得到的预测结果进行修正。建立负荷预测的误差修正模型,并通过算例验证了误差修正的短期负荷预测方法的可行性和实用性,达到了提高短期负荷预测精度的目的。
1
燃气负荷受到天气状况和经济发展等多种因素的影响, 造成燃气变化趋势具有较大的复杂性和特征因子较大的冗余性, 造成预测精度的下降. 为了解决这个问题, 在处理燃气负荷的复杂性中使用EEMD自适应的时频局部化分析方法, 将非线性非平稳的燃气负荷数据分解为平稳的本征模式分量及剩余项. 在解决特征因子之间的冗余性中, 在PCA中加入互信息分析, 使用互信息代替协方差矩阵的特征值选择特征向量, 可以有效避免PCA仅仅考虑特征之间的相关性, 忽略了与燃气负荷值关系的缺点. 最后针对不同的子序列建立对应的LSTM模型, 重构各个分量的预测值产生最后的结果. 使用上海的燃气数据进行验证, 实验结果证明本文提出的方法测试集MAPE达到6.36%, 低于其他模型的误差.
1
广东工业大学本科生毕业设计(论文)任务书-电力市场下基于BP神经网络的短期负荷预测建模及其仿真研究
1
电力系统短期负荷预测数据集(matlab、python)
2021-10-14 16:17:06 10.7MB 数据集
1
基于卷积神经网络与纵横交叉算法的二维组合短期负荷预测方法研究.pdf
2021-10-01 18:06:24 1.12MB 神经网络 深度学习 机器学习 数据建模
基于SVM电力系统短期负荷预测的一个例程源码.zip
2021-10-01 09:04:13 20KB
短期电力负荷预测,支持向量机结合粒子群算法进行短期电力负荷预测的实例
2021-09-28 14:06:02 21KB svm负荷预测 粒子群 电力预测 负荷
基于粗糙集和支持向量机的电力系统短期负荷预测.pdf