内容概要:本文介绍了基于Matlab的光储充交直流三相并网与网系统的集成与仿真。系统由600kW光伏系统、双向DCDC储能系统、PQ控制并网逆变器以及三组全桥LLC结构充电桩组成。光伏系统采用电导增量法进行最大功率点跟踪,储能系统通过电压外环和电流内环控制维持母线电压稳定,逆变器采用SPWM调制实现恒压/恒流充电,充电桩支持多种工况运行并具备恒流切恒压功能。文中提供了两个仿真实验用于效果对比,展示了系统的性能特点和技术细节。 适用人群:从事电力电子、新能源发电、智能电网等领域研究的技术人员和科研工作者。 使用场景及目标:适用于希望深入了解光储充交直流三相并网与网系统的设计原理、仿真方法及其实际应用效果的研究人员。目标是帮助读者掌握该系统的架构设计、关键技术和优化策略。 其他说明:由于仿真运行时间较长,建议读者耐心等待仿真完成以获得最佳效果。此外,文中提供的仿真模型和资料有助于进一步深入研究和实验验证。
2025-06-11 16:54:00 1.25MB
1
三相光储交直流系统中的高效能充放电技术与并网控制,光储充交直流三相并网网系统:基于Matlab仿真平台的光伏大功率储能充电桩一体化设计与控制策略研究,光储充交直流三相并网 网系统 基于Matlab三相光伏储能充电桩(光储充一体化) 关键词:光伏大功率 储能 充电桩 LLC 电池 并网PQ控制 SPWM 恒压 恒流充电 提供两个仿真可对比看效果,如图一,二。 点击“加好友”可先看波形效果细节 1、光伏,功率600kW,采用电导增量法 2、储能系统 采用双向DCDC,buck-boost变器,采用电压外环,电流内环,稳定母线电压800V。 3、并网逆变器采用PQ控制,交流系统 含220V大电网,LC滤波器,采用SPWM调制 4、三组充电桩采用全桥LLC结构,输入800V左右,恒压输出350~480V,恒流输出100A~300A效果好(恒流设置越小达到稳定的时间越长,理论可以设0A空载运行),额定功率120kW,开关频率60k。 充电桩可设置不同工况运行。 具备恒流切恒压功能。 注:仿真运行时间很长,超过半小时,这是为了能满足LLC散运行要求,把powergui设置的很小,导致运
2025-06-11 16:47:29 868KB
1
虚拟同步控制vsg仿真模型:基于matlab simulink的电压电流双环控制与网/并网运行的稳定性分析,基于Matlab Simulink的虚拟同步控制VSG仿真模型:应对电网复杂多变环境稳定运行 希望符合您的要求。,同步控制vsg 仿真模型 matlab simulink 电压电流双环控制 同步控制 svpwm 网 并网均可运行 仿真模型 交流复杂突变 电网频率波动 有功指令突变 均可稳定运行 ,核心关键词: 虚拟同步控制; VSG仿真模型; Matlab Simulink; 电压电流双环控制; SVPWM; 网并网运行; 仿真模型; 电网频率波动; 有功指令突变; 稳定运行。,基于Matlab Simulink的虚拟同步控制VSG仿真模型:网并网稳定运行的双环控制策略研究
2025-04-14 23:04:54 6.95MB rpc
1
针对红外双波段成像系统性能测试与评估的应用需求,设计了3um-5um和8uM-12um红外双波段视景仿真用轴三反光学系统。在共轴三反光学系统成像理论基础上,分析了孔径光栏远主镜的轴三反系统像差特性,研究了大出瞳距、大相对孔径条件下轴三反光学系统的结构设计和像差平衡方法。系统焦距为330mm,F#为3,视场为60X4.5。,出瞳距为750mm,在空间频率10lp/mm处,中波红外MTF>0.65,长波红外MTF>0.4,接近衍射极限。具有大视场、大出瞳距、高分辨率、结构紧凑等特点。
2024-11-22 23:32:34 300KB 工程技术 论文
1
OpenGL是一种强大的图形编程接口,广泛应用于游戏开发、科学可视化、工程设计等领域。屏渲染(Offscreen Rendering)是OpenGL中的一个重要技术,它允许我们在屏幕之外的纹理或帧缓冲区进行渲染操作,然后将结果用于后续的图形处理或者保存为图像文件。这个初级的OpenGL程序Demo就是围绕屏渲染展开的,旨在帮助初学者理解这一概念。 在OpenGL中,通常的渲染流程是将图形绘制到默认的帧缓冲区,然后显示在屏幕上。屏渲染则是在一个自定义的帧缓冲对象(Framebuffer Object, FBO)上进行,FBO可以关联多个附件,如颜色缓冲、深度缓冲和模板缓冲,从而提供了更大的灵活性。在这个Demo中,开发者创建了一个FBO,并将渲染的结果存储在一个纹理中,而不是直接显示在屏幕上。 我们需要设置FBO,这包括创建FBO、绑定附件(如颜色缓冲和深度缓冲)以及分配纹理来存储渲染结果。这部分代码可能涉及到`glGenFramebuffers`、`glBindFramebuffer`、`glGenTextures`、`glTexImage2D`和`glFramebufferTexture2D`等函数。 接着,开发者会在屏渲染阶段进行图形的绘制,这可能包括设置视口、投影矩阵、模型视图矩阵等,然后调用`glDrawArrays`或`glDrawElements`来绘制几何物体。在Demo中,你可以看到两个正方体,一个内正方体可以被右键拖动旋转,一个外正方体可以被左键拖动旋转,这通过改变模型视图矩阵实现。 完成屏渲染后,开发者可以将FBO中的结果应用到屏幕上。这通常通过绑定默认的帧缓冲、设置适当的混合模式和清除颜色,然后将FBO的纹理作为纹理坐标进行采样并绘制到屏幕上。这个过程可能涉及到`glBindTexture`、`glUniform`和`glDrawArrays`等函数。 屏渲染在许多高级特效和计算中都有应用,比如环境光遮蔽(Ambient Occlusion)、全局光照(Global Illumination)、后期处理(Post-Processing)和屏幕空间反射(Screen-Space Reflections)。通过屏渲染,我们可以对场景进行多次复杂计算,而不会影响到实时性。 这个OpenGL Demo是学习屏渲染的良好起点,它可以帮助初学者理解如何创建和使用FBO,以及如何在屏和屏幕之间切换渲染目标。通过实践和调试,你可以更深入地了解OpenGL的渲染管线和状态管理,这对进一步学习高级图形编程技巧至关重要。同时,这个Demo也展示了OpenGL与输入设备交互的基本方法,如监听鼠标事件来改变视角。这个Demo提供了丰富的学习素材,对想要掌握OpenGL的初学者来说非常有价值。
2024-08-22 14:34:37 2.34MB OpenGL Demo Offscreen Render
1
皮尔逊Ⅲ型曲线的均系数Φ值表完整版.xls
2024-04-18 12:47:28 46KB 皮尔逊Ⅲ型曲线 离均系数
1
时间序列预测调查 该项目的目的是使用新颖的机器学习方法改进对时间序列的预测,并将其向前推进几步,以便更好地预测异常值,例如资产负债表上的异常。 安装 将此存储库克隆或下载到您的计算机。 安装Jupyter Lab( pip install jupyterlab )。 cd到存储库的目录。 使用以下命令启动Jupyter Lab: jupyter lab 。 笔记本可以在Jupyter Lab窗口中打开并运行。 所需的数据很轻,因此已经包含在此存储库中。
2024-03-29 17:34:11 9.59MB JupyterNotebook
1
STM32储能逆变器资料,提供原理图,pcb,源代码。 基于STM32F103设计,具有并网充电、放电;并网网自动切换;485通讯,在线升级;风扇智能控制,提供过流、过压、短路、过温等全方位保护。 功率5kw。
2024-02-28 14:41:59 403KB stm32
1
我们开发了一个模型,其中质子结构的量子涨落以热点为特征,热点的数量随着Bjorken-x的减小而增加。 我们的模型以适当的比例从HERA再现了F2(x,Q2)数据,以及从H1和ALICE产生的排他性和分性J / ψ照片生产数据。 我们的模型预测,对于Wβpâ500GeV,可解的J / ψ横截面达到最大值,然后随着能量急剧减小,这在质量上与最近的观察结果一致,即在排他性下可解的J / ψ背景 ALICE在光生产中测得的J / ψ样品随着能量的增加而降低。 我们的预测为LHC能量的胶子饱和提供了清晰的信号。
2024-02-28 12:44:18 327KB Open Access
1
我们计算了LHC在质子-质子碰撞中J / ψ介子的半排他性产生的质子的电磁解和衍射解。 在s = 7and13 TeV下,计算了缺失质量(MX)或仅与J / ψ介子有关的单粒子变量的几个微分分布。 将横截面和分布与纯排他反应ppâppJ/ ψ的横截面进行比较。 我们显示了相应的比率作为J / ψ介子速度的函数。 我们比较了纯电磁质子和纯衍射质子激发/解的分布。 我们预测了相似数量级的电磁和衍射激励的横截面。
2024-02-28 12:26:23 684KB Open Access
1