K-means算法论文 K-means算法是一种广泛使用的动态聚类算法,它将各个聚类子集内的所有数据样本的均值作为该聚类的代表点。该算法的主要思想是将数据样本分配到离其最近的聚类中心,直到聚类中心不再改变为止。 1. K-means算法的定义 K-means算法是一种无监督学习算法,它可以将数据样本分配到K个聚类中,K是事先确定的参数。该算法的目标是找到一个最佳的聚类方式,使得每个聚类中数据样本的相似度最大。 2. K-means算法的步骤 K-means算法的主要步骤可以分为以下几个部分: * 初始化:选择K个初始聚类中心,通常可以随机选择或使用.heuristic方法选择。 * 分配:将每个数据样本分配到离其最近的聚类中心。 * 更新:更新每个聚类中心的位置,使其更加接近该聚类中的数据样本。 * 重复:重复上述步骤,直到聚类中心不再改变为止。 3. K-means算法的优缺点 K-means算法的优点包括: * 简单易实现:K-means算法的实现非常简单,可以使用多种编程语言实现。 * 高效率:K-means算法的计算效率非常高,可以快速处理大量数据。 * 可扩展性强:K-means算法可以处理高维数据,可以应用于多种领域。 然而,K-means算法也存在一些缺点: *asily affected by outliers:K-means算法对离群值非常敏感,可能会受到离群值的影响。 * K的选择:K-means算法的性能非常依赖于K的选择,选择不当可能会影响算法的性能。 4. K-means算法的改进 为了克服K-means算法的缺点,人们提出了许多改进方法,包括: * 使用核函数:使用核函数可以使K-means算法更好地适应非线性数据。 * 使用多种距离度量:使用多种距离度量可以使K-means算法更好地适应不同类型的数据。 * 使用Hierarchical Clustering:使用层次聚类方法可以使K-means算法更好地适应高维数据。 5. K-means算法的应用 K-means算法在很多领域都有广泛的应用,包括: * 图像处理:K-means算法可以用于图像分割、图像压缩等。 * 数据挖掘:K-means算法可以用于数据挖掘、数据分析等。 * Recommender System:K-means算法可以用于推荐系统的构建。 K-means算法是一种广泛使用的动态聚类算法,它可以将数据样本分配到K个聚类中。该算法的优点包括简单易实现、高效率、可扩展性强,但也存在一些缺点,如易受离群值的影响、K的选择对性能的影响。为了克服这些缺点,人们提出了许多改进方法,K-means算法也在很多领域都有广泛的应用。
2025-05-11 16:06:35 1.61MB Kmeans算法 k均值算法 聚类算法
1
基于python聚类算法的实现--包含:最大最小距离算法、近邻聚类算法、层次聚类算法、K-均值聚类算法、ISODATA聚类算法
2025-05-05 19:57:47 7KB python 聚类
1
聚类是机器学习领域的一种无监督学习方法,主要用于数据挖掘,尤其在数据分析、模式识别、图像分割等场景中广泛应用。本资源包含一个关于聚类算法的PPT和使用Python实现的可运行代码,旨在帮助理解并实践聚类过程。 聚类的目标是将数据集中的对象依据相似性原则划分成不同的组,每个组称为一个簇。簇内的对象彼此相似,而簇间的对象则相异。聚类算法不依赖于预先设定的类别,而是通过数据本身的特性来发现潜在的结构。 PPT可能涵盖以下知识点: 1. 聚类的基本概念:包括定义、目的、类型(层次聚类、划分聚类、基于密度的聚类、基于模型的聚类等)。 2. 聚类的质量度量:如轮廓系数、Calinski-Harabasz指数、Davies-Bouldin指数等,用于评估聚类效果的好坏。 3. 常见聚类算法介绍: - K-Means:是最常用的聚类算法之一,基于距离度量,通过迭代优化分配和中心点。 - 层次聚类(Agglomerative Clustering和Divisive Clustering):分为自底向上和自顶向下的策略,通过合并或分裂节点构建层次结构。 - DBSCAN(基于密度的聚类):能发现任意形状的簇,对噪声有较好的抵抗能力。 - Mean Shift:寻找密度峰值的聚类方法,适合处理非凸形状的簇。 - Gaussian Mixture Models (GMM):基于概率模型的聚类,假设数据来自高斯混合分布。 接下来,Python实现的代码可能包括这些算法的实例和应用: 1. K-Means代码实现:会包含初始化质心、分配数据点、更新质心等步骤,以及可能使用的库,如scikit-learn中的KMeans类。 2. DBSCAN代码实现:涉及计算邻域、找到核心对象、扩展簇的过程,可能会使用到scikit-learn中的DBSCAN类。 3. 其他算法的实现:例如层次聚类中的linkage函数,GMM的fit和predict方法等。 实际代码中还会涉及数据预处理步骤,如标准化、降维(PCA)等,以确保聚类结果不受特征尺度或维度的影响。此外,代码可能还包括可视化部分,使用matplotlib或seaborn库展示聚类结果,如散点图、聚类树等。 这个资源提供了一个全面了解和实践聚类算法的平台,不仅理论讲解清晰,还有实战代码可供学习和参考。无论是初学者还是有一定经验的开发者,都能从中获益,提升对聚类的理解和应用能力。
2025-05-05 10:47:08 8.43MB 聚类 机器学习
1
内容概要:本文介绍了基于RIME-DBSCAN的数据聚类可视化方法及其在Matlab中的实现。RIME-DBSCAN是一种改进的密度聚类算法,通过调整密度分布和距离计算,解决了传统DBSCAN算法在高维数据和复杂数据结构中的局限性。该方法通过Matlab平台实现了数据聚类,并结合可视化技术展示了聚类结果,帮助用户直观理解数据的分布和聚类效果。文章详细描述了项目的背景、目标、挑战、创新点及应用领域,并提供了具体的模型架构和代码示例。 适合人群:对数据挖掘、机器学习及聚类算法有一定了解的研究人员和技术人员,尤其是从事数据分析、数据可视化工作的专业人士。 使用场景及目标:①适用于处理高维数据和复杂数据结构的聚类任务;②通过可视化工具展示聚类结果,帮助用户理解数据分布和噪声点位置;③优化数据分析过程,为医疗、金融、电商、社交网络等领域提供数据支持。 其他说明:本文不仅介绍了RIME-DBSCAN算法的理论基础,还提供了具体的Matlab代码实现,便于读者动手实践。同时,文中提到的降维技术和参数选择策略也是项目中的重点和难点,需要读者在实践中不断探索和优化。
2025-04-29 09:45:43 32KB Matlab 数据聚类 可视化 高维数据处理
1
根据不同中药材在近红外、中红外光谱的照射下表现的光谱特征具有较大差异,本文主要根据光谱特征进行鉴别中药材的种类及其产地。建立了数据可视化分布模型,利用了改进的K-means聚类模型、相关系数、距离判别法、平均相关系数和BP神经网络等模型。 对于问题一:首先,将附件 1 的光谱数据可视化,直观的分析了不同药材的分布特征和差异;其次,利用Python的Matplotlib库将附件1的数据绘制成直方图(见附录1),确定了大致可分为3类;最后,建立了K-means聚类模型,第三类数据直观上差异较大,故又建立了改进的K-means聚类模型,不先指定类数,再次验证了分为3类是合理的。 对于问题二:首先,利用Matplotlib库将同一产地不同波数下的数据求均值,并可视化,分析了不同产地的特征及差异;其次,利用Python数据分析未知产地数据,与已知产地的数据进行计算相关性系数,产地的相关系数求平均,即。最大,说明属于产地;最后,建立了反向传播神经网络模型进行了第二次分产地演算,得到了产地的归属。 对于问题三:首先,利用Python的corr函数求得了未知产地和已知产地的相关系数,将同一产地的相关系
2025-04-28 18:59:57 48.7MB kmeans 聚类 神经网络 python
1
DBSCAN聚类算法是一种基于密度的空间聚类算法,它通过考察数据点周围的邻域来识别高密度区域,将紧密相连的点归为同一类。尽管DBSCAN在处理大型数据库和发现任意形状的簇方面具有优势,但它在效率和准确性方面仍有一些局限性。为了提升DBSCAN算法的性能,RIME技术应运而生,该技术着重于提高数据挖掘过程中的性能与准确度。 RIME技术通过引入一种新的距离度量和优化后的聚类策略,改进了DBSCAN算法的初始核心对象选取过程和簇的扩展过程。在数据点的邻域定义上,RIME可能采用了更有效的计算方式,从而减少了计算复杂度。此外,RIME还可能在确定簇内点和噪声点方面做出了调整,使得算法在不同密度的数据集上都能表现出较好的适应性和稳定性。 在实际应用中,RIME优化的DBSCAN算法能够在大数据时代背景下,为数据挖掘和聚类分析提供更加精确和高效的支持。由于大数据时代数据集的规模通常非常庞大,其中可能包含有噪声的数据点,也可能存在复杂的分布特征。因此,传统的数据挖掘方法在处理这类数据时往往会遇到性能瓶颈。RIME优化的DBSCAN算法可以更有效地处理大规模数据集,同时保持聚类的质量,为相关领域的研究和应用提供了重要的技术支撑。 从给出的文件列表中可以看出,相关的文章和文件主题都围绕着RIME优化的DBSCAN聚类算法以及其在数据挖掘领域的应用。这些文件包含了从引言、深度探索到实际应用分析的多个角度,涉及了文本、图像和超文本格式。通过这些资料的阅读与分析,研究人员能够深入了解RIME技术如何改善DBSCAN聚类算法,并将其应用于现实世界的大数据分析中。 RIME技术的提出和应用,是为了解决DBSCAN聚类算法在处理大数据时所面临的效率和准确性问题。通过改进距离度量和聚类策略,优化后的DBSCAN算法能更好地适应大数据时代的需求,为数据挖掘领域带来更为精准和高效的数据处理能力。相关研究人员可以通过分析给定的文件资料,全面掌握RIME优化DBSCAN聚类算法的理论基础和实践应用,进一步推动该领域的技术进步。
2025-04-28 15:48:01 160KB rpc
1
本资源为燕山大学大数据三级项目,包括项目报告(英文版)和源码(可直接在虚拟机上运行),实现了新闻聚类和新闻分类。利用hadoop、spark和scala。其中有参考文件为如何在虚拟机上将scala文件提交到spark中 ;源码test.scala实现了新闻聚类,里面有分词(需要安装两个jar包),特征提取,利用kmeans聚类。output.libsvm为老师给的数据集的特征提取,就是spark官网上的代码总是读取libsvm,利用这个可直接读取,进行分类;分类有朴素贝叶斯和逻辑回归其中朴素贝叶斯准确率较高,逻辑回归准确率较低。navie为朴素贝叶斯源码,classify为逻辑回归源码。
2025-04-19 00:01:48 2.82MB 聚类 hadoop spark scala
1
在短距离无线通信中,无线节点或移动终端通常有低成本、小体积、低功耗的要求,因此无法使用复杂的预失真或补偿电路克服功放的非线性影响,这是无线节点或移动终端在上行链路中难以使用高阶QAM调制的重要原因之一。基于QAM矩形星座的特点,提出了一种K-means聚类的改进算法作为中央基站节点的高阶QAM解调算法。在发送信号受到较严重的功放非线性失真时,所提改进算法解调性能更优,算法复杂度更低。 在短距离无线通信中,高阶QAM(Quadrature Amplitude Modulation)调制由于其高传输效率而被广泛采用,但同时也面临着功率放大器(PA)非线性失真的挑战。由于无线节点和移动终端对成本、体积和功耗的严格限制,无法采用复杂的预失真或补偿电路来应对这一问题。为了解决这一难题,一种针对失真QAM信号的改进K-means聚类算法被提出,特别适用于中央基站节点的高阶QAM解调。 传统的K-means聚类算法主要用于数据挖掘和模式识别,而在通信领域,尤其是用于高阶调制的解调,这一应用并不常见。该改进算法的优势在于,在功放非线性导致QAM星座图严重失真的情况下,可以提供更优的解调性能,同时保持较低的算法复杂度。 在K-means解调过程中,关键步骤包括数据点的聚类和星座编号判决。原始的K-means算法可能因为“两星座一簇”或“一星座两簇”的情况导致误判,而改进算法则通过利用星座图的先验知识,比如矩形星座的结构,来更精确地选择初始聚类中心。对于矩形星座,算法首先估算数据点的分布范围,然后进行非均匀网格划分,结合理想星座图剔除无关点,最后选取最接近数据点的网格点作为初始聚类中心,确保每个星座点对应一个聚类中心,提高了解调的准确性。 具体实施上,算法会接收一组数据点的横纵坐标集合,根据QAM调制的阶数K和矩形星座的行数M进行处理。通过调整非均匀划分系数η,可以适应不同的失真程度,以达到最佳的解调效果。这种改进策略有效地降低了由于功放非线性导致的解调错误率,尤其在面对严重的失真时,解调性能优于常规方法。 该改进的K-means聚类算法为短距离无线通信中的高阶QAM解调提供了一种新的解决方案。它巧妙地利用了通信系统内的先验信息,降低了算法复杂度,同时提高了解调的准确性和鲁棒性,对于无线节点和移动终端的低功耗、低成本需求是一个理想的匹配。随着C-RAN架构的推广,这种算法有望在未来的无线通信系统中发挥重要作用,特别是在那些需要高效能、低功耗解调的场景中。
2025-04-13 21:00:56 577KB
1
标题中的"基于HMM的方法进行时间数据聚类的双加权集成",涉及的关键知识点包括时间数据聚类(temporal data clustering)、隐马尔可夫模型(Hidden Markov Model, HMM)、双加权集成(bi-weighted ensemble),以及模型选择(model selection)。 时间数据聚类是无监督的数据挖掘技术中的一种,旨在将未标记的数据集分成不同的组,称为簇(clusters),使得同一簇中的数据点应该是连贯或者同质的。文章提到了众多已开发用于时间数据挖掘任务的聚类算法,它们的一个共同趋势是需要解决初始化问题和自动模型选择问题。初始化问题可能是指在基于HMM的聚类技术中,由于不同的初始状态,可能导致聚类结果的差异性,而自动模型选择问题则可能指在处理时间序列数据时,需要确定最适合数据特点的聚类数量或者模型结构。 隐马尔可夫模型是一种统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。在时间序列分析、生物信息学、自然语言处理等领域有着广泛的应用。HMM通常被用于分析时间数据,因为它们能够很好地对时间序列数据中的序列性和随机性进行建模。 双加权集成是文章中提出的一种新方法,用于提升基于HMM的时间数据聚类技术。这种方法提出的双加权方案在检查每个分区以及在输入分区上优化共识函数的过程中,根据分区的重要性水平。文章中还提到了基于树的聚类算法和基于树状图的相似分区(DSPA),这种聚类算法可以优化最终的共识分区。 模型选择是指在多个候选模型中选择最符合数据特点的模型的过程。在聚类算法中,模型选择通常涉及到确定最合适的簇的数量、聚类算法的类型或者模型的参数配置。在时间数据聚类中,模型选择尤为重要,因为时间数据的序列特性要求模型能够捕捉数据随时间的动态变化。 双加权集成方法的核心在于它能够自动确定簇的数量,并且在各种时间数据集上表现出优异的聚类性能,包括合成数据集、时间序列基准数据集和现实世界中的运动轨迹数据集。这表明该方法在解决时间数据聚类问题时具备一定的通用性和优越性。 文章的背景介绍部分强调了聚类的重要性,并提出了当前聚类算法在处理时间数据时遇到的一些共同挑战,即如何自动选择最佳的模型和簇数量。为了解决这些问题,文章提出了双加权集成方法,这是一种新颖的技术,旨在改进现有的聚类集成技术。集成学习(ensemble learning)本身是一种机器学习范式,它构建并组合多个学习器来解决同一问题,并通过组合它们的预测来提高整体性能。在聚类领域中,集成学习被用来提升聚类结果的稳定性和准确性。通过考虑不同初始条件下HMM模型生成的多个分区,并使用双加权机制和基于树状图的相似分区技术对这些分区进行优化和整合,文章的方法能够实现更好的聚类效果。 文章提到了研究的历史背景,包括接收、修订和接受的日期,以及文章的关键词。这为读者提供了文章研究过程的视角,也强调了聚类、集成学习和模型选择是该研究的核心主题。通过研究这些领域的最新进展,文章试图为时间数据聚类的研究贡献新的理论和实践成果。
2025-04-13 19:31:03 3.01MB 研究论文
1
使用matlab对输入的二维数据进行k-means聚类。因为算法本身的思想,每次聚类的结果可能不同。
2024-11-30 16:59:33 2KB matlab
1