针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练神经网络,一个用来实现对机械臂进行模型辨识,一个用来实现对机械臂轨迹跟踪控制。对二自由度机械臂进行仿真,结果表明,使用该控制方案对机械臂进行轨迹跟踪控制具有较高的控制精度,且因采用EC-RBF学习算法使网络具有更快的训练速度,从而使得控制过程较迅速。
2025-05-07 20:14:03 609KB 论文研究
1
UR5机械臂作为一款工业机器人,其在自动化领域中扮演着极为重要的角色。六自由度机械臂的设计赋予了UR5高灵活性和精准的操作能力,使其能够在工业生产中执行复杂任务。PID(比例-积分-微分)控制是一种常见的反馈控制机制,通过调整控制参数以减小误差,达到系统期望的性能,对于机械臂轨迹跟踪控制尤为重要。 为了实现精确的轨迹跟踪,机械臂控制系统需要建立准确的数学模型。在此过程中,DH参数表(Denavit-Hartenberg参数)提供了一种系统化的方法来描述机器人连杆和关节之间的关系,它定义了连杆的长度、扭转角度、偏移量等参数,使得能够以数学的方式对机械臂的运动进行描述和仿真。 坐标系表示是机器人运动学分析中的基础,通过定义不同的坐标系来表示机械臂上每个关节的位置和姿态,这对于建立机械臂运动模型至关重要。三维模型则是对机械臂结构的直观展现,它不仅能够帮助工程师理解机械臂的各个组成部分,而且对于进行物理仿真和机械设计优化也起着关键作用。 在机械臂的控制系统中,能够导出角度、角速度、角加速度以及力矩等数据,这些数据对于分析机械臂在执行任务时的动态性能和预测其行为至关重要。通过这些数据,工程师可以对机械臂进行性能评估,调整PID控制参数,以提高跟踪精度和稳定性。 误差曲线图是评估机械臂控制系统性能的重要工具。通过分析误差曲线,工程师可以直观地看到机械臂执行任务过程中的跟踪误差变化情况。根据误差曲线的形状和大小,可以对控制算法进行调整和优化,以实现更高的控制精度。 本文档提供的文件名称列表显示,除了六自由度机械臂的技术分析和介绍外,还包括了机械臂的三维模型文件、DH参数表以及相关的仿真分析报告。这些文件为实现UR5机械臂的精确控制提供了必要的理论和实践基础。 UR5六自由度机械臂的PID轨迹跟踪控制涉及多个领域的知识,包括机器人运动学、控制理论、三维建模以及仿真技术等。通过对这些领域知识的综合运用,可以实现对UR5机械臂的精确控制,使其在工业自动化生产中发挥更大的作用。
2025-04-29 20:16:12 151KB sass
1
针对船舶存在模型不确定项与未知环境干扰的轨迹跟踪控制问题,将动态面控制技术、自适应神经网络、滑模控制算法与backstepping设计方法相结合,并设计一种基于神经网络的船舶轨迹跟踪自适应滑模控制律;
2025-04-29 10:49:59 471KB 轨迹跟踪 滑模控制
1
复现研究:基于NMPC的分布式轨迹跟踪控制算法在水下航行器中的应用与验证,复现研究:基于NMPC的分布式轨迹跟踪控制算法在水下航行器中的应用与验证,【复现】水下航行器(NMPC)非线性模型预测控制分布式轨迹跟踪 复现文献1: 《Distributed implementation of nonlinear model predictive control for AUV trajectory tracking》 复现文献2: 《Modified C GMRES Algorithm for Fast Nonlinear Model Predictive Tracking Control of AUVs》 1、利用水下机器人运动的动态特性,提出了一种新的分布式NMPC算法。 通过适当地将原始优化问题分解为更小的子问题,然后以分布式方式解决它们,可以显著减少预期的浮点操作(flops)。 2、证明了在分解子问题中所提出的收缩约束可以保证AUV轨迹的收敛性。 证明了该方法的递推可行性和闭环稳定性。 利用保证的稳定性,进一步开发了一种实时分布式实现算法,在控制性能和计算复杂度之间进行自动权衡。
2025-04-18 15:11:52 6.35MB xhtml
1
轨迹跟踪CarSimMATLAB联合仿真模型预测控制横纵向协同控制 【打包文件包括】 -CarSim车型文件.cpar -MPC车速跟踪算法MPC_LongControl_Dyn_Alg.m -MPC横向路径跟踪算法MPC_LateralControl_Dyn_Alg_DLC3888.m -Simulink系统文件MPC_LateralControl_Dyn.slx -自己录制的CarSimMATLAB联合仿真一步步操作流程 在现代汽车系统中,轨迹跟踪作为一项关键技术,它的目的是使汽车能够按照预定的路径精确行驶。为了达到这一目的,研究人员和工程师们开发了多种技术手段,其中模型预测控制(MPC)与横纵向协同控制策略,已经成为了实现精确轨迹跟踪的重要方法之一。 模型预测控制(MPC)是一种先进的控制策略,它能够处理系统的多变量和时间延迟特性,并且能够考虑未来一段时间内的系统行为和约束条件,通过优化计算出当前时刻的最优控制策略。在汽车轨迹跟踪的应用中,MPC通过构建车辆运动模型,可以预测未来一段时间内车辆的行驶状态,并实时调整车辆的横纵向控制输入,以最小化与预设轨迹之间的偏差。 当MPC与其他控制策略结合,特别是横纵向协同控制时,可以实现对车辆横纵向运动的综合控制。横纵向协同控制是指同时对车辆的横向和纵向运动进行控制,以实现更为复杂的行驶任务。例如,在需要变道超车或者在狭窄道路上行驶时,车辆不仅要控制自身的纵向速度,还要控制横向位置,确保行驶的安全性和舒适性。 在实现轨迹跟踪的联合仿真中,CarSim和MATLAB/Simulink是两种常用的工具。CarSim是一个专业的汽车动力学仿真软件,它能够提供精确的车辆模型和复杂场景设置。而MATLAB/Simulink则是一个强大的仿真平台,它支持复杂的算法开发和系统级仿真。通过将CarSim与MATLAB/Simulink联合使用,研究人员可以在更加真实的环境下测试和验证轨迹跟踪控制策略,同时利用MATLAB强大的计算和优化能力,为车辆控制策略的开发提供强有力的工具支持。 在本次提供的压缩包文件中,包含了多个关键组件,如CarSim车型文件(.cpar)、MPC车速跟踪算法(MPC_LongControl_Dyn_Alg.m)、MPC横向路径跟踪算法(MPC_LateralControl_Dyn_Alg_DLC3888.m)、Simulink系统文件(MPC_LateralControl_Dyn.slx)以及相关的操作流程文档。这些文件为研究者们提供了完整的仿真环境和算法实现,使得他们可以模拟出复杂的道路情况,验证和改进轨迹跟踪算法。 此外,压缩包中还包含了一些文本和图片文件,这些文件可能是对于联合仿真模型预测控制横纵向协同控制的详细解析或案例分析,以及相关操作流程的可视化表达。这些内容对于理解联合仿真环境中的控制策略,以及如何操作仿真工具,进行仿真实验具有重要的指导意义。 轨迹跟踪技术的发展对于提升汽车安全性和舒适性具有重要意义。通过模型预测控制和横纵向协同控制策略,可以实现更为复杂和精确的车辆轨迹跟踪。而CarSim与MATLAB/Simulink的联合仿真为这一技术的发展提供了强有力的支撑,使得研究人员能够在更加接近实际环境的条件下测试和验证相关控制算法。而通过本次提供的压缩包文件,我们可以进一步探索和学习如何应用这些先进的技术和工具来提升轨迹跟踪的能力。
2025-04-10 20:53:32 828KB
1
非线性模型预测控制(NMPC)原理详解及四大案例实践:自动泊车、倒立摆上翻、车辆轨迹跟踪与四旋翼无人机应用,nmpc非线性模型预测控制从原理到代码实践 含4个案例 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。 ,nmpc非线性模型预测控制; 原理; 代码实践; 案例; 自动泊车轨迹优化; 倒立摆上翻控制; 车辆运动学轨迹跟踪; 四旋翼无人机轨迹跟踪。,"NMPC非线性模型预测控制:原理与代码实践,四案例详解自动泊车、倒立摆、车辆轨迹跟踪与四旋翼无人机控制"
2025-04-07 22:55:22 442KB
1
无人机四旋翼PID控制和自适应滑模控制轨迹跟踪仿真研究:三维图像与matlab Simulink模拟分析,无人机仿真 无人机四旋翼uav轨迹跟踪PID控制matlab,|||simulink仿真,包括位置三维图像,三个姿态角度图像,位置图像,以及参考位置实际位置对比图像。 四旋翼无人机轨迹跟踪自适应滑模控制,matlab仿真。 ,核心关键词:无人机仿真; 四旋翼UAV; 轨迹跟踪; PID控制; Matlab; Simulink仿真; 位置三维图像; 姿态角度图像; 位置图像; 参考位置实际位置对比图像; 自适应滑模控制。,"无人机四旋翼轨迹跟踪的PID与自适应滑模控制Matlab/Simulink仿真研究"
2025-04-06 21:29:45 231KB 哈希算法
1
一个基于 MPC 的自动驾驶汽车轨迹跟踪 资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持
2025-03-28 20:07:50 1003KB MPC算法
1
基于MPC的轨迹跟踪控制联合仿真:Simulink与Carsim参数设置详解及效果展示,基于MPC的模型预测轨迹跟踪控制联合仿真simulink模型+carsim参数设置 效果如图 可选模型说明文件和操作说明 ,基于MPC的模型预测; 轨迹跟踪控制; 联合仿真; simulink模型; carsim参数设置; 效果图; 可选模型说明文件; 操作说明,基于MPC的轨迹跟踪控制:Simulink+Carsim联合仿真效果图解析及模型操作指南 在深入探讨基于模型预测控制(Model Predictive Control, MPC)的轨迹跟踪控制联合仿真技术时,我们有必要详细解析Simulink与Carsim这两种仿真软件在参数设置上的细节及其联合仿真效果。Simulink是一个广泛应用于多领域动态系统建模和仿真的软件,其强大的模块化设计能力和丰富的工具箱为复杂系统的分析和设计提供了便利。而Carsim则是专门针对汽车动力学性能仿真的一款软件,可以模拟车辆在各种工况下的动态响应和行为。 本文将详细探讨如何在Simulink与Carsim中进行参数设置,以便实现高效的轨迹跟踪控制联合仿真。我们需要理解MPC的基本原理。MPC是一种先进的控制策略,它通过在每个控制周期内优化未来一段时间内的控制输入,来满足性能指标并保证系统的约束得到满足。MPC在轨迹跟踪中的应用,尤其是在非线性和约束条件较为复杂的车辆控制系统中,展现出了显著的优势。 在Simulink中,MPC控制器的参数设置主要包括模型预测范围、控制范围、控制变量和状态变量的定义,以及预测模型的建立等。此外,控制器的优化算法选择、目标函数和约束条件的设定也是确保轨迹跟踪性能的关键。在Carsim中,我们需要设置车辆的物理参数、环境参数、路面条件等,以确保仿真的真实性和准确性。在两者的联合仿真中,需要确保Simulink中的MPC控制器能够接收Carsim提供的实时车辆状态数据,并进行正确的控制决策输出。 文档中提到的模型说明文件和操作说明可能包括了对仿真模型的详细介绍,以及如何在Simulink和Carsim中进行操作的具体步骤。这些文件对初学者来说尤为宝贵,因为它们可以减少学习曲线,加快仿真模型的搭建速度。联合仿真效果如图所示,意味着通过恰当的参数设置,仿真模型能够在Carsim中实现预定的轨迹跟踪任务,并且可以通过Simulink直观地展示出仿真结果。 联合仿真不仅能够验证MPC算法在车辆轨迹跟踪控制中的有效性,还能够提供一个直观的平台来分析和调整控制策略,以满足不同工况下的性能要求。同时,联合仿真的结果也可以用来指导实际的车辆控制系统的设计和优化,为智能交通系统的开发提供理论基础和实践参考。 在当前智能交通和自动驾驶技术的快速发展背景下,基于MPC的轨迹跟踪控制联合仿真技术显得尤为重要。它不仅有助于解决传统控制策略难以应对的复杂工况问题,还能在保证安全的前提下提高车辆的行驶性能和舒适性。未来,随着算法的不断完善和计算能力的提升,MPC在轨迹跟踪控制领域的应用将更加广泛,并将进一步推动智能交通技术的进步。
2025-03-28 20:02:15 94KB 数据仓库
1
PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序仿真实现,基于matlab/Simulink仿真实现,同时实现动图生成。 PID路径跟踪小程序
2024-09-09 16:28:17 1.66MB matlab Simulink
1