MATLAB实现CNN-GRU卷积门控循环单元多输入时序预测(完整源码和数据) 数据为多变量时间序列数据,多输入单输出 运行环境MATLAB2020b及以上,运行程序即可。
回归预测 | MATLAB实现GRU(门控循环单元)多输入单输出(完整源码和数据) GRU(门控循环单元)多输入单输出,运行环境MATLAB2020b及以上。
互联网上含有大量多字体混合、形变、拉伸、左右结构字形、倾斜畸变等复杂场景下的敏感文字图片,在处理相关图片过程中存在特征提取难、识别率低的问题.本文提出基于空间变换网络与密集神经网络的方法对图片敏感文字进行特征提取与变换矫正,使用了深层双向GRU网络与CTC时域连接网络对序列特征信息进行标记预测,序列化处理文本的方式可较好地提升距离较宽文字与模糊文字信息的处理能力.实验结果表明,本模型在Caffe-OCR中文合成数据集和CTW数据集中分别实现了87.0%和90.3%识别准确率,平均识别时间达到了26.3 ms/图.
1
针对光纤布拉格光栅(FBG)传感网络中重叠光谱的中心波长解调问题,提出一种基于门控循环单元(GRU)网络的波长检测方法。该方法将FBG重叠光谱的波长解调问题转换为模型回归问题,同时考虑到光谱数据的序列特征和频谱特性,采用GRU网络实现对光谱数据的特征学习,训练得到相应的波长检测模型,从而实现对重叠光谱的精确快速解调。经实验验证,所提方法能够解决FBG传感网络光谱部分重叠或完全重叠条件下的中心波长的精确解调问题,其方均根小于1 pm的测试结果占总数的88.2%。相比现有的解调方式,所提方法在检测精度和稳定性上均有一定的提升,为提高FBG传感网络的复用能力提供了新的途径。
2021-11-09 20:54:04 5.74MB 光纤光学 光纤布拉 波长检测 深度学习
1
随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进行预测。考虑到风功率预测中输入数据的波动性和不确定性,在传统门控循环单元(GRU)神经网络的基础上融合卷积神经网络(CNN),以提高模型对原始数据的特征提取和降维能力,并引入dropout技术减少模型中的过拟合现象。工程实例分析表明,所提模型在预测准确度和运算速度方面均优于长短记忆神经网络模型。
1
时间序列预测方面论文,RNN_LSTM角度有所区别创新
2021-09-01 19:01:19 448KB 门控单元神经网络
1
MATLAB实现GRU(门控循环单元)时间序列预测
1