第三章对线性调频雷达的干扰 第三章对线性调频雷达的干扰 雷达的工作原理是通过对回波信号的检测发现目标并测量目标的参数信息 的,所以干扰的重点就落在了对雷达信号的利用上面。干扰的目的就是要破坏雷 达这样一个工作的流程,让干扰信号能够尽可能多的进入到雷达接收机,使雷达 不能正常的对目标信息进行探测或者得到错误的目标参数信息。 对雷达干扰的分类有很多种,按是否辐射电磁能量可以分为有源干扰和无源 干扰。利用干扰机产生电磁能量,主动施放电磁能量的方式称为有源干扰。本身 不主动辐射,而是反射、改变敌方的辐射能量称为无源干扰。例如箔条干扰,就 是利用箔条对雷达波的反射,在雷达接收机中产生较强的噪声,形成对雷达的电 磁压制干扰效果,因而它属于无源压制干扰。有源干扰按干扰效果可以分为压制 式干扰和欺骗式干扰。压制式干扰利用噪声和类似噪声的干扰信号进入雷达接收 机,压制真实目标的回波信号,使雷达不能正确的得到目标的参数信息。欺骗式 干扰是通过转发或者直接发射携带假目标信息的信号到雷达的接收机,使雷达的 目标检测和跟踪系统不能正常的检测出真实目标,同时将产生的假目标误认为是 真目标,从而达到以假乱真的目的。 目前对LFM雷达的干扰研究较多∞刮,主要是因为LFM信号其压缩的原理是利 用了不同频率分量经过匹配滤波器后的延迟特性不同来达到压缩效果的。对LFld 雷达的干扰主要有:射频噪声干扰,噪声调制干扰,延时转发干扰,移频干扰,等 间隙取样干扰等。噪声干扰由于通过匹配滤波器几乎不会获得压缩处理增益,所 以,需要能发送大功率信号的干扰机,这给工程实现带来了困难。于是干扰界提 出了基于卷积噪声的灵巧干扰方法,一方面利用信号的压缩特性,一方面利用噪 声的随机性来产生干扰信号,这种方法能获得很好的压制干扰效果。延时转发干 扰是将截获到的雷达信号存储后通过不断的转发在雷达的距离轴上产生距离拖引 的干扰效果。移频干扰是人为的对收到的雷达信号加一个多普勒频率调制,从而 使产生的假目标相对于真实目标有一个距离上的延时,以达到欺骗干扰效果。等 间隔取样干扰是通过低采样率对信号欠采样,利用不同频率分量的加权幅度不一 致来产生成串具有随机性的假目标,主假目标产生欺骗干扰效果,其他旁瓣假目 标产生压制的干扰效果。
2025-04-16 16:25:13 3.77MB
1
本书专门论述SAR成像处理算法及其涉及的数字信号处理理论和技术
2025-04-16 14:57:29 37.97MB SAR成像
1
### 多传感器融合技术概述 在现代信息技术领域中,多传感器融合技术被广泛应用于自动驾驶、机器人导航、环境监测等多个方面。这项技术的核心在于通过集成多种不同类型传感器的数据来提高系统的感知能力,实现更准确、更全面的信息获取。其中,毫米波雷达与视觉传感器的融合是目前研究热点之一。 ### 毫米波雷达与视觉传感器简介 #### 毫米波雷达 毫米波雷达工作于毫米波段(通常指30GHz至300GHz频段),具有体积小、重量轻、穿透能力强等特点,在恶劣天气条件下的表现尤为突出。它可以测量目标的距离、速度以及角度等信息,适用于远距离目标检测。 #### 视觉传感器 视觉传感器主要包括摄像头,能够捕捉到丰富的图像信息,如颜色、纹理等细节,非常适合进行目标识别与分类。但由于其依赖光线条件,因此在光照不足或强光直射等场景下效果不佳。 ### 多传感器融合原理 多传感器融合旨在通过算法处理不同传感器采集到的数据,实现互补优势。具体而言: 1. **数据预处理**:对原始传感器数据进行清洗、降噪等操作。 2. **特征提取**:从传感器数据中提取有用特征,如雷达的目标距离、速度信息;图像的目标形状、颜色特征等。 3. **数据关联**:确定来自不同传感器的同一目标数据,这一过程往往较为复杂,需要解决时空同步问题。 4. **状态估计**:利用卡尔曼滤波、粒子滤波等方法对目标状态进行估计,提高估计精度。 5. **决策融合**:根据状态估计结果做出最终决策,如自动驾驶中的避障决策。 ### 毫米波雷达与视觉融合应用场景 1. **自动驾驶**:通过融合雷达与视觉数据,可以实现对周围环境的精准感知,包括行人检测、障碍物识别等功能,提升车辆行驶安全性。 2. **机器人导航**:在复杂环境中,利用多传感器融合技术可以帮助机器人更准确地定位自身位置,并规划合理路径。 3. **安防监控**:结合毫米波雷达的全天候特性与视觉传感器的高分辨率图像,能够在各种环境下实现高效监控。 ### 关键技术挑战 尽管毫米波雷达与视觉融合带来了显著优势,但仍面临一些技术难题: 1. **数据同步**:如何确保来自不同传感器的数据在时间上严格同步是一个重要问题。 2. **信息关联**:尤其是在动态变化的环境中,正确关联不同传感器的数据是一项挑战。 3. **计算资源限制**:多传感器融合涉及到大量数据处理,对计算平台提出了较高要求。 ### 结论 随着技术不断进步及应用场景日益扩展,毫米波雷达与视觉传感器的融合将展现出更为广阔的应用前景。通过对两种传感器数据的有效整合,可以有效提升系统的鲁棒性和适应性,为自动驾驶、机器人技术等领域带来革命性变革。未来,随着更多创新算法的提出及相关硬件设备性能的持续优化,我们有理由相信多传感器融合技术将在更多领域发挥关键作用。
2025-04-14 13:12:43 37B
1
MATLAB与CST联合仿真快速建模超表面阵列:便捷导入编码序列,涡旋波应用助力科研提速,MATLAB与CST联合仿真快速建模超表面阵列:便捷导入编码序列,涡旋波生成与雷达散射截面优化,MATLAB联合CST进行仿真。 只需要写一个Excel,里面放你的编码序列,然后用MATLAB导入编码序列,或者你需要的超表面的排列方式。 就能够在CST里面自动生成对应的超表面阵列。 主要是针对单元个数太多,手动建模麻烦等问题。 能够用到涡旋波的生成,雷达散射截面缩减,聚焦波束等等。 无论是1比特,还是2比特,3比特等等都可以建模。 建模方式迅速,对科研帮助比较大。 ,MATLAB; CST仿真; 超表面阵列; 涡旋波生成; 雷达散射截面缩减; 聚焦波束; 编码序列; 建模效率; 科研帮助。,MATLAB驱动CST超表面自动建模工具
2025-04-14 12:28:06 2.93MB istio
1
lidarslam_ros2 ros2 slam软件包的前端使用OpenMP增强的gicp / ndt扫描匹配,而后端则使用基于图形的slam。 移动机器人映射 绿色:带闭环的路径(大小为10m×10m的25x25网格) 红色和黄色:地图 概要 lidarslam_ros2是使用OpenMP增强的gicp / ndt扫描匹配的前端和使用基于图的slam的后端的ROS2程序包。 我发现即使只有16线LiDAR,即使是具有16GB内存的四核笔记本电脑也可以在室外环境下工作几公里。 (在制品) 要求建造 您需要作为扫描匹配器 克隆 cd ~/ros2_ws/src git clone --
2025-04-12 18:50:55 1.19MB localization mapping lidar slam
1
在IT行业中,激光雷达(Light Detection and Ranging)是一种利用激光光束进行测距和空间感知的技术,广泛应用于自动驾驶、无人机导航、环境监测等领域。LD14是一款专门设计用于接收和处理雷达数据的设备,其核心功能是收集并解析激光雷达产生的原始数据,将其转化为可读的、有意义的信息。 雷达数据处理涉及多个关键步骤,首先是数据采集。在LD14设备中,激光雷达发射器向目标发射一系列短脉冲激光,这些激光在接触到物体后反射回来,由接收器捕获。接收器测量这些回波信号的时间差和强度变化,从而计算出目标的距离、速度和角度信息。 接着是数据预处理。这一步包括去除噪声、校正系统误差、滤波等操作,目的是提高数据的准确性和稳定性。例如,LD14可能使用了平均滤波、中值滤波或卡尔曼滤波等算法来消除环境干扰和硬件噪声。 然后是数据解码与定位。原始雷达数据通常以二进制或特定格式存储,需要经过解码才能转化为人类可读的格式。在这个阶段,设备会将接收到的光电信号转换为三维坐标,确定目标的位置、大小和形状。同时,可能还需要进行坐标变换,将数据从雷达的本地坐标系转换到全球坐标系或其他参考系。 再者,数据融合是另一个重要的环节。在多传感器系统中,如同时集成激光雷达、摄像头和超声波传感器,需要将来自不同传感器的数据进行融合,以提升环境感知的全面性和鲁棒性。LD14可能具备这样的功能,能有效整合不同来源的数据,提供更精确的环境模型。 数据可视化与应用。处理后的雷达数据可以用于创建点云图,进一步生成三维地图,或者用于避障、路径规划等应用。在自动驾驶领域,这些信息对于车辆决策系统至关重要,帮助车辆判断周围环境,实现安全行驶。 "ld14 接收雷达数据处理及转换"涵盖了激光雷达数据的采集、预处理、解码、定位、融合以及应用等多个环节,这些技术是现代智能系统中不可或缺的部分,特别是对于需要实时环境感知和决策的自动驾驶系统。了解并掌握这些知识,对于开发和优化相关系统具有深远意义。
2025-04-12 15:51:34 5.22MB
1
基于单片机的智能倒车雷达系统毕业论文 本文设计了一种基于单片机的智能倒车雷达系统,以解决汽车倒车时的安全问题。该系统采用超声波技术实现无接触测距,能够实时检测汽车与障碍物之间的距离,并提供音响警报提示驾驶员。系统的核心是STC89C52单片机,配备HC-SR04超声波模块、LED显示电路、键盘控制电路和报警模块等组件。 该系统的设计基于声波在空气中传播反射原理。超声波发射器不断发射出一系列连续脉冲,给测量逻辑电路提供一个短脉冲。最后由信号处理装置对接收的信号依据时间差进行处理,自动计算出车与障碍物之间的距离。该系统的测量距离范围为0.5m~5m,适用于汽车倒车雷达等近距离测距中。 系统的硬件组成包括超声波模块HC-SR04、LED显示电路、键盘控制电路、报警模块等。超声波模块HC-SR04是该系统的关键组件,负责超声波的发射和接收。LED显示电路用于显示汽车与障碍物之间的距离,键盘控制电路用于设置安全距离和警报音量,报警模块用于发出警报警示驾驶员。 该系统的设计具有很高的实用价值,可以广泛应用于汽车倒车雷达、机器人避障、自动驾驶等领域。该系统的优点是使用简洁,成本低廉,测距范围广泛,能够满足不同场景下的需求。 在设计该系统时,我们还遇到了许多挑战,例如超声波信号的干扰、信号处理算法的优化、系统的电路设计等。为了解决这些问题,我们采取了一些措施,例如使用滤波电路来减少噪声、优化信号处理算法以提高系统的测距精度等。 本文设计了一种基于单片机的智能倒车雷达系统,能够实时检测汽车与障碍物之间的距离,并提供音响警报提示驾驶员。该系统具有很高的实用价值,可以广泛应用于汽车倒车雷达、机器人避障、自动驾驶等领域。 知识点: * 基于单片机的智能倒车雷达系统的设计和实现 * 超声波技术在汽车倒车雷达系统中的应用 * STC89C52单片机的应用 * HC-SR04超声波模块的应用 * 信号处理算法在倒车雷达系统中的应用 * 基于单片机的智能倒车雷达系统的优点和挑战 扩展阅读: * 基于单片机的智能倒车雷达系统的未来发展方向 * 超声波技术在其他领域的应用,例如机器人避障、自动驾驶等 * 单片机在智能倒车雷达系统中的应用和挑战 * 基于单片机的智能倒车雷达系统的成本和效益分析
2025-04-11 22:50:13 2.69MB
1
# 基于ROS和YOLO的相机与激光雷达融合检测系统 ## 项目简介 本项目是一个基于ROS(Robot Operating System)和YOLO(You Only Look Once)深度学习算法的相机与激光雷达融合检测系统。该系统通过联合标定相机和激光雷达,实现对环境中的物体进行精确检测和定位。主要应用于自动驾驶、机器人导航等领域。 ## 项目的主要特性和功能 1. 相机与激光雷达联合标定 相机内参标定使用棋盘格标定板进行相机内参标定,获取相机的内参矩阵和畸变参数。 相机与激光雷达外参标定通过Autoware工具进行外参标定,获取相机与激光雷达之间的外参矩阵。 2. 物体检测与点云融合 使用YOLO v3算法检测相机图像中的车辆目标。 通过外参矩阵将检测到的目标边界框投影到激光雷达坐标系下,实现点云与图像的融合。 在RVIZ中显示融合后的检测结果,绿色框标记出车辆点云。 3. ROS集成
2025-04-11 16:28:07 4.82MB
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-10 15:02:34 2.05MB matlab
1
在雷达技术领域,MATLAB作为一个强大的数学计算和仿真工具,被广泛用于雷达信号处理的教学与研究。本教程“雷达入门课系列文章(1)_基于MATLAB的雷达信号处理实验教程”将带你逐步走进雷达的世界,通过MATLAB实现一系列关键的雷达处理技术。 我们来了解LFM(线性调频)信号的产生。LFM信号是雷达系统中常用的一种脉冲压缩信号,它的频率随着时间线性变化。在MATLAB中,可以利用`chirp`函数生成这种信号,通过设定起始频率、结束频率和持续时间,能够得到所需的LFM脉冲。LFM信号的特点是具有宽的频带宽度和窄的脉冲宽度,这在提高雷达探测距离分辨率和减少发射功率的同时,保持了良好的距离分辨能力。 接着,我们将探讨脉冲压缩技术。脉冲压缩是提高雷达系统性能的关键手段,它通过在发射端使用宽带信号,在接收端进行匹配滤波来实现。在MATLAB中,可以使用自相关函数或者设计合适的滤波器(如FIR或IIR滤波器)实现脉冲压缩,从而显著提高雷达的测距精度和目标分辨率。 接下来,我们将学习CFAR(恒虚警率)检测。在雷达信号处理中,CFAR算法能帮助我们从噪声背景中有效检测出目标信号,确保在不同环境条件下保持恒定的虚警率。MATLAB提供了多种CFAR检测算法实现,如细胞平均法、邻近窗口比较法等,通过对回波数据进行处理,可以有效地抑制雷达杂波并识别出潜在的目标。 再来说说和差波束测角技术。雷达天线阵列可以通过合成不同的波束来获取目标的角度信息。在MATLAB中,我们可以利用天线阵列的和差信号特性,通过模拟信号的相位差来实现角度估计。这种方法称为波束形成,它能提供方位角和仰角的二维角度信息,对于多目标的跟踪和识别至关重要。 这个基于MATLAB的雷达信号处理实验教程将带你深入理解雷达系统的核心原理,通过实际操作提升理论知识的理解和应用能力。在学习过程中,你可以尝试修改参数,观察结果的变化,以加深对这些概念的理解。通过这样的实践,你将能够熟练掌握雷达信号处理中的重要技术,并为未来深入研究雷达系统打下坚实基础。
2025-04-09 14:13:34 59KB matlab
1